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Abstract

We combine a theoretical discrete-choice model of vehicle purchases, an economet-

ric analysis of electricity emissions, and the AP2 air pollution model to estimate the

geographic variation in the environmental benefits from driving electric vehicles. The

second-best electric vehicle purchase subsidy ranges from $2785 in California to -$4964

in North Dakota, with a mean of -$1095. Ninety percent of local environmental exter-

nalities from driving electric vehicles in one state are exported to others, implying they

may be subsidized locally, even when the environmental benefits are negative overall.

Geographically differentiated subsidies can reduce deadweight loss, but only modestly.
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1 Introduction

For a variety of reasons, including technological advances, environmental concerns, and en-

trepreneurial audacity, the market for pure electric vehicles, which was moribund for more

than a century, is poised for a dramatic revival.1 Several models are already selling in consid-

erable volumes, the portfolio of electric vehicles is beginning to span the vehicle choice set,

and almost all major manufacturers are bringing new models to the market. The Federal

Government is encouraging these developments by providing a significant subsidy for the

purchase of an electric vehicle, and some states augment the federal policy with their own

additional subsidy.2

Proponents of these subsidies argue electric vehicles generate a range of short-term and

long-term benefits such as reduced environmental impacts, innovation spillovers, and reduced

reliance on imported oil.3 In this paper we analyze whether electric vehicles do indeed

generate short-term environmental benefits by examining air pollution damages from driving

gasoline vehicles and charging electric vehicles. In particular, we focus on the importance

of local factors by including global and local pollution, spatial heterogeneity of damages,

pollution export across political jurisdictions, and policy that may vary by location.

Three main considerations motivate our analysis. First, prior studies of electric vehicles

have focused on calculating the emissions of electric vehicles but have not had a conceptual

framework for analyzing electric vehicle subsidies.4 We analyze a model of vehicle choice,

which gives us the theoretically sound and intuitive result that the subsidy should be equal

to the difference in lifetime damages between an electric vehicle and a gasoline vehicle. Our

theoretical framework also allows us to address additional policy questions regarding the best

policies for different jurisdictional levels and the welfare gains from policy differentiation.5

Second, despite being treated by regulators as “zero emission vehicles”, electric vehicles

are not necessarily emissions free (National Academy of Sciences 2010). In 2014, the U.S.

1http://energy.gov/articles/history-electric-car.
2Internal Revenue Code Section 30D (Notice 2009-89) provides a tax credit of up to $7500.
3energy.gov/eere/vehicles/ev-everywhere-grand-challenge-does-10-year-vision-plug-electric-vehicles.
4See for example, Graff Zivin et al (2014) and Michalek et al (2011).
5Examples of theoretical discrete choice transportation models include De Borger (2001), De Borger

and Mayeres (2007), and Parry and Small (2005). Differentiated policy is analyzed by Weitzman (1974),
Mendelsohn (1986), Banzhaf and Chupp (2012), and Fowlie and Muller (2013).
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Department of Energy reported that nearly 70 percent of electricity generated in the U.S.

is produced by burning coal and natural gas. In many locations, the comparison between a

gasoline vehicle and an electric one is really a comparison between burning gasoline or a mix

of coal and natural gas to move the vehicle. However, average emissions of regional power

plants can be a misleading indicator of the environmental impact of electric cars because all

power plants do not respond proportionally to an increase in electricity usage and because

electricity flows do not respect regional (e.g., state) boundaries.6 To assess the emissions

from charging an electric vehicle, we use an econometric model to estimate the effect of

charging an electric vehicle on the marginal emissions of multiple pollutants at each power

plant.7

Third, there are significant physical differences between emissions from gasoline and

electric vehicles. This is due to the distributed nature of the electricity grid, the height at

which emissions occur, and the chemistry of fuel combustion. As a result, pollutants and

emissions rates may be spatially distinct even if gasoline and electric vehicles are driven in

the same place. For local pollutants, an additional problem is that the same vehicle driven

in different places leads to different damages. For this reason, many prior studies consider

only carbon dioxide.8 We use an integrated assessment model to value damages across local

and global pollutants for both electric and gasoline vehicles.9

Addressing these three considerations yields a powerful modeling framework for analyzing

electric vehicle policy. In particular, our study is the first to consider the geographic variation

in damages from both local and global pollutants emitted by both gasoline and electric

vehicles and to tie this variation to a choice model.10 This framework enables us not only to

6EPA’s calculated CO2 emissions rates for electric vehicles (www.fueleconomy.gov) are regional averages.
7This builds on Graff Zivin et al (2014) and Holland and Mansur (2008).
8See for example, Graff Zivin et al (2014) and Archsmith et al (2015).
9Previous air pollution integrated assessment research includes Mendelsohn (1980), Burtraw et al (1998),

Mauzerall et al (2005), Tong et al (2006), Fann et al (2009), Levy et al (2009), Muller and Mendelsohn (2009),
and Henry et al (2011). We model both ground-level emissions and power plant emissions throughout the
contiguous U.S. In contrast to prior work, we report damages within the county of emission, within the state
of emission, and in total (across all receptors).

10Babaee et al (2014), Graff Zivin et al (2014), Michalek et al (2011), and Tessum et al (2014) analyze the
benefits of electric vehicles at the aggregate level. Li et al (2015) consider variation in damages from electric
vehicles but assume uniform damages from gasoline vehicles. Grissom (2013) considers variation in damages
from gasoline vehicles but does not account for local pollution from electric vehicle charging. Archsmith et
al (2015) assess the life cycle GHG benefits from electric vehicles.
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evaluate the environmental benefit of electric cars, but also to address questions of political

economy and fiscal federalism.

Our first set of results documents the considerable heterogeneity in the environmental

benefits of an electric vehicle relative to a gasoline vehicle. These benefits can be large and

positive, large and negative, or negligible, depending on the location. For example, California

has relatively large damages from gasoline vehicles and a relatively clean electric grid, which

implies large positive environmental benefits of an electric vehicle. These conditions are

reversed in North Dakota. The variation in the sign of the environmental benefits stems

almost entirely from local air pollution. If we account only for greenhouse gases, then

electric vehicles are superior to gasoline vehicles almost everywhere. Using our model, we

determine the welfare maximizing subsidies on electric vehicle purchases. We refer to these

subsidies as second-best, but we stress that they only account for the relative differences in

environmental impacts from driving electric and gasoline vehicles in the short run. Even in

locations like California, subsidy values are significantly less than the current federal subsidy.

The national average subsidy for the purchase of an electric vehicle is estimated to be -$1095.

Thus, on average in the U.S., the second-best purchase policy is a tax, not a subsidy.

Our second set of results shows the remarkable degree to which electric vehicles driven in

one location lead to environmental externalities in other locations. At the state level, 91%

of local pollution damages from driving an electric vehicle are exported to states other than

the state in which the vehicle is driven. In contrast, only 19% of local pollution damages

from driving a gasoline vehicle are exported to other states. This discrepancy casts doubt on

the efficacy of policy selected by local regulators. It is not obvious whether a given state will

consider full damages (damages across all states), or only native damages (those damages

which actually occur in the given state) when setting policy. Moreover, state regulators

face incentives in current air pollution policy that emphasize within-state consequences of

emissions. The National Ambient Air Quality Standards (NAAQS) emphasize compliance

with ambient pollution limits within states. Although there are constraints on the extent

of exported pollution, especially from power plants, the NAAQS clearly encourage local

compliance. This leads state regulators to focus on in-state damage and hence prefer a

technology that exports pollution to other regions. The difference between using full and
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native damages in determining the second-best subsidy may be considerable. Accounting

for full damages the second-best subsidy is positive in 11 states. Accounting for only native

damages, the second-best subsidy is positive in 32 states.

The final set of results assesses the deadweight loss of various policies as well as the

welfare gains from differentiated policy. Our theoretical analysis reveals that the welfare

gains from differentiated subsidies depend on the higher order moments of the distribution

of environmental benefits. Calibrating this model gives us an estimate of the magnitude of

these gains. For electric vehicle subsidies, we find large deadweight loss and small welfare

gains from differentiation. For taxes on miles, we find small (or zero) deadweight loss and

larger welfare gains from differentiation.

There are several important caveats to our calculation of the environmental benefits

of electric vehicles. First, it only captures air pollution emissions associated with driving

or charging the vehicles. It does not account for “upstream” environmental externalities

associated with producing either fuels or vehicles. Second, it is based on the electricity grid

in the years 2010-2012 and current gasoline vehicle technology.11 Over time, both the grid

and gasoline vehicles may become cleaner. Third, it depends on marginal emissions from

an increase in the demand for electric power to charge electric vehicles. This may not be

appropriate when electric vehicles comprise a substantial fraction of the vehicle fleet. Fourth,

it ignores pre-existing environmental polices such as the Corporate Average Fuel Economy

(CAFE) standards and cap and trade markets for various local pollutants. For each of these

caveats, we consider the degree to which they affect our calculated environmental benefits.

With these caveats in mind, our main results show that the subsidy for electric vehicles

is not justified by environmental benefits. But, as noted above, there are other arguments

in favor of electric vehicle subsidies. Perhaps most important is the possibility of the long-

term benefits due to a combination of innovation spillovers, learning by doing, and dynamic

changes to the electricity grid. Any such long-term benefits may be at least partially offset

by the short-term costs associated with current electric vehicle use. Our analysis provides

an estimate of these short-term costs. Moreover, by shedding light on issues related to

11The emissions inventory used by our integrated assessment model (AP2) is from 2011. These are the
latest years for which all data are available.
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differentiated regulation and pollution export, we provide a policy framework for subsequent

analysis of long-term issues.

In Section 2 we develop a simple general equilibrium model that includes discrete choice

over vehicle type as well as environmental externalities from driving. In Section 3 we de-

scribe the methods by which we determine emissions and damages from electric and gasoline

vehicles. Section 4 presents the results. In Section 5 we discuss the caveats to our analysis.

Section 6 concludes.

2 Theoretical model

Consider a theoretical discrete choice transportation model in which consumers in the market

for a new vehicle choose between a gasoline vehicle and an electric vehicle.12 Consumers

obtain utility from a composite consumption good x (with price normalized to one) and

from miles driven over the life of the selected vehicle, either gasoline miles g or electric miles

e. We allow for several policy variables. The government may provide a subsidy s for the

purchase of an electric vehicle, place a tax tg on gasoline miles, a tax te on electric miles, or

some combination of these policies.13 We hold fuel and vehicle prices fixed.14

The indirect utility of purchasing a gasoline vehicle is

Vg = max
x,g

x + f(g) such that x + (pg + tg)g = I − pΨ,

where pΨ is the price of the gasoline vehicle, pg is the price of a gasoline mile, I is income,

and f is a concave function. Likewise, the indirect utility of purchasing an electric vehicle is

Ve = max
x,e

x + h(e) such that x + (pe + te)e = I − (pΩ − s),

12Examples of general discrete choice models are Anderson et al (1992) and Small and Rosen (1981). Appli-
cations to transportation models are de Borger (2001) and de Borger and Mayeres (2007). In Supplementary
Appendix A, we extend the model to include several vehicles of each type.

13 Alternatively, we might consider a tax on fuel consumption. These taxes are equivalent in our model,
but may not be equivalent in a model with multiple vehicles of each type. See Fullerton and West (2002).

14This is consistent with a model in which vehicles and miles are produced by price-taking firms using
constant returns to scale technology.
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where pΩ is the price of the electric vehicle, pe is the price of an electric mile, and h is a

concave function. Any difference in attributes between the gasoline and electric vehicle are

captured by differences in the functions f and g. Because the objective function in these

optimization problems is quasi-linear, there are no income effects.15

Following the discrete choice literature, we assume that the choice of vehicle is influ-

enced by i.i.d. random variables εg and εe drawn from a common extreme value distribution

with zero expected value and standard deviation that is proportional to a parameter µ.16

Accordingly, we define

Ug = Vg + εg,

and

Ue = Ve + εe.

A consumer selects the gasoline vehicle if Ug > Ue. This occurs with probability

π ≡ Probability(Ug > Ue) =
exp(Vg/µ)

exp(Vg/µ) + exp(Ve/µ)
.

The expected utility of a new vehicle purchase is given by

E [max[Ue,Ug]] = µ ln (exp(Ve/µ) + exp(Vg/µ)) .

Consumers create negative environmental externalities by driving, but ignore the damages

from these externalities when making choices about the type of vehicle and number of miles.

In our empirical analysis, gasoline vehicles emit several pollutants from their tailpipes and

electric vehicles cause emissions of several pollutants from the smokestacks of electric power

plants that charge them. Because the damages from these pollutants may be global or local,

we introduce multiple locations into the model.

15The marginal utility of income is equal to one, the number of miles driven does not depend on income,
and the choice of vehicle does not depend on income.

16The variance is µ2
(3.14159)2/6.
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2.1 Uniform vs. differentiated regulation

Let m denote the number of locations and let αi denote the proportion of the total population

of new vehicle buyers that resides in location i. An important feature of our model is that

driving in one location may lead to local damages in that location, as well as local damages

in other locations. Accordingly, we define full damages due to driving in location i as the sum

across all locations of local damages plus the global damages. Assuming that both global

and local damage functions are linear allows us to characterize full damages with a single

variable for each type of vehicle.17 Let δgi denote the marginal full damages (in dollars per

mile) from driving a gasoline vehicle in location i, and δei denote the marginal full damages

(in dollars per mile) from driving an electric vehicle in location i.

We determine welfare maximizing purchase subsidies under both uniform regulation (the

same policy applies to all locations) and differentiated regulation (policy may vary from

location to location). Because the first-best policy in our model is differentiated Pigovian

taxes on both types of miles, we refer to the welfare maximizing subsidies as second-best.18

First we study differentiated regulation. Here there are m local governments that select

location-specific purchase subsidies. Let Ri denote the expected government revenue gen-

erated by the purchase of a new vehicle in location i.19 For the moment, we assume local

government i cares about full damages due to driving in location i. It selects the purchase

subsidy si to maximize the welfare Wi associated with the purchase of a new vehicle within

location i, defined as the sum of expected utility and expected revenue less expected pollution

damage:20

Wi = µ (ln(exp(Vei/µ) + exp(Vgi/µ))) +Ri − (δgiπigi + δei(1 − πi)ei).

Optimizing the welfare function gives the the following Proposition (all proofs are in

17Constant marginal damages is consistent with the EPA’s social cost of carbon calculations as well as
prior research on local air pollution (Muller and Mendelsohn 2009; Fowlie and Muller 2013).

18Results for uniform taxes on miles are in Supplementary Appendix B.
19Alternatively we could have a single revenue equation and assume that a central government makes the

location-specific policy choices. But, given our subsequent distinction between full and native damages, it is
natural to consider distinct local governments.

20Because there are no income effects, the consumer component of welfare is equivalent to the standard
notion of compensating variation (Small and Rosen 1981).
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Supplementary Appendix A).

Proposition 1. The second-best differentiated subsidy on the purchase of the electric vehicle

in location i is given by s∗i where

s∗i = (δgigi − δeiei) .

The term δgigi − δeiei is simply the difference between the full damages over the driving

lifetime of a gasoline vehicle and the full damages over the driving lifetime of an electric

vehicle.21 Even if the electric vehicle emits less pollution per mile than the gasoline vehicle,

the sign of the subsidy is ambiguous, because the number of miles driven may be different.

If the miles driven are indeed the same, and the electric vehicle emits less pollution per mile

than the gasoline vehicle, then the subsidy is positive. We refer to the difference δgi − δei
as the environmental benefits of an electric vehicle. This concept assumes that the number

of miles driven by the two types of vehicles is the same (an assumption we will maintain in

most of the empirical section below).

Next we study uniform regulation. Here a central government selects a uniform subsidy

that applies to all m locations. The government’s objective is to maximize ∑αiWi, which

is the weighted average of welfare across locations. The next proposition delineates the

second-best uniform subsidy. It also describes an approximation formula for the welfare gain

in moving from uniform regulation to differentiated regulation.

Proposition 2. Assume that prices, income, and the functions h and g are the same across

locations. The second-best uniform subsidy on the purchase of an electric vehicle is given by

s̃, where

s̃ = ((∑αiδgi)g − (∑αiδei)e) .

Furthermore, let W(S∗) be the weighted average of welfare from using the second-best differ-

entiated subsidies s∗i in each location and let W(S̃) be the weighted average of welfare from

using the second-best uniform subsidy s̃ in each location. To a second-order approximation,

21The formula for s∗i has a simple structure because there are two vehicles in the choice set. If the choice
set is larger, then s∗i will depend on the various cross-price elasticities (see Supplementary Appendix A).
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we have

W(S∗) −W(S̃) ≈ 1

2
π(1 − π) ( 1

µ
∑αi(s∗i − s̃)2 − 1

µ2
(1 − 2π)∑αi(s∗i − s̃)3) ,

where π is evaluated at the uniform subsidy.

These results are most easily interpreted in the special case in which the population of

new vehicle buyers is the same in each location (αi = 1
n) and the electric vehicle and gasoline

vehicle are driven the same number of miles (g = e).22 Here the second-best uniform subsidy

s̃ is equal to the average environmental benefits multiplied by the number of miles driven.

And the approximate welfare gain from differentiation is a function of the second and third

moments of the distribution of the environmental benefits. To understand these results,

consider marginal welfare in region i:

∂Wi

∂si
= π(1 − π)

µ
(−si + g(δgi − δei)).

When set equal to zero in a first-order condition, the policy variable si can be solved for

as a linear function of the environmental benefits. But the marginal welfare function itself

is a non-linear function of si (through the variable π). If it had been linear in si, then the

approximate welfare gain from differentiation would not have been a function of the third

moment.23

Proposition 2 provides a point of comparison to previous work on differentiated regula-

tion. But the practical application of the approximation is limited because it depends on

the value of µ. Recall that this parameter is proportional to the standard deviation of the

random variables in the utility function. If we determine a value for µ, either by an econo-

metric procedure (Dubin and McFadden 1984) or by a calibration procedure (De Borger and

Mayeres 2007), then we will generally be able to determine the exact numerical value of the

welfare gain, which eliminates the need for an approximation.

22To test the robustness of the results in Propositions 1 and 2, we also analyze a model in which consumers
make a continuous choice between gasoline and electric miles. See Supplementary Appendix C.

23For more details and a comparison with Mendelsohn (1986), see Supplementary Appendix D. See also
Jacobsen et al (2015).
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2.2 Full vs. native damages

So far we have assumed that local government i is concerned with the full damages caused

by driving in location i. But this may not necessarily hold. For example, when an electric

vehicle in driven in Pennsylvania, regulators in Pennsylvania may be more concerned about

environmental damages which occur in Pennsylvania than they are about downwind damages

that occur in New York. To account for this possibility, it is useful to break up full damages

into native damages (i.e. those damages which occur in location i) and exported damages

(i.e. those which occur in other locations.)

If a local government only cares about native damages, then its objective is to maximize

Ŵi = µ (ln(exp(Vei/µ) + exp(Vgi/µ))) +Ri − (δ̂giπigi + δ̂ei(1 − πi)ei),

where δ̂gi and δ̂ei are the marginal native damages in location i due to driving a vehicle in

location i. It follows from Proposition 1 that the second-best purchase subsidy based on

native damages, denoted by ŝ∗i , is given by

ŝ∗i = (δ̂gigi − δ̂eiei) .

We would expect considerable heterogeneity across locations in the relationship between

native and full damages due to the various chemical and physical processes that govern the

flow of local pollution. In general, however, we would expect electric vehicles to export more

pollution than gasoline vehicles, due to the distributed nature of electricity generation as well

as the fact that smokestacks release emissions much higher in the atmosphere than tailpipes.

The greater the extent to which the electric emissions are exported to other locations, the

greater the extent to which a given location may want to subsidize the purchase of an electric

vehicle.
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3 Calculating air pollution damages

The theoretical model illustrates that the environmental benefits of an electric vehicle arises

from reduced damages relative to the gasoline vehicle it replaces. We calculate this benefit by

determining emissions per mile for electric and gasoline vehicles, and then mapping emissions

into damages, accounting for the fact that both emissions and damages may differ by location.

In these calculations, we use the county as the basic unit of location. We first give an overview

of our general procedure, and then describe the details of our two component empirical

models.

We consider damages from five pollutants: CO2, SO2, NOx, PM2.5, and VOCs. These

pollutants account for the majority of global and local air pollution damages and have been

a major focus of public policy.24 Our set of electric vehicles includes each of the eleven pure

electric vehicles in the EPA fuel efficiency database for the 2014 model year.25 Our set of

gasoline vehicles is meant to capture the closest substitute in terms of non-price attributes to

each electric vehicle. Wherever possible, we use the gasoline-powered version of the identical

vehicle, e.g., the gasoline-powered Ford Focus for the electric Ford Focus.26

To determine the emissions per mile for each gasoline vehicle, we integrate data from

several sources.27 For CO2 and SO2, emissions are directly proportional to gasoline usage,

so we use conversion factors in GREET scaled by the EPA’s MPG.28 We differentiate urban

and non-urban counties by using EPA’s city and highway mileage.29 For NOx emissions, we

use the Tier 2 emission standards for the vehicle “bin”. For PM2.5 and VOCs, we combine

the Tier 2 standards with GREET estimates of PM2.5 emissions from tires and brakes and

VOC emissions from evaporation. The implication of this procedure is that emissions per

24We do not analyze emissions of CO and toxics like mercury. Most CO emissions are from vehicles, and
most toxics are from power plants, so the direction of bias from these omissions is unclear.

25The federal purchase subsidy depends on the size of the battery. All eleven pure electric vehicles are
eligible for the maximum subsidy of $7500.

26Survey data on new vehicle purchases provided by MaritzCX was used to verify that these choices were
reasonable. See Supplementary Appendix E for details.

27We do not make state-level adjustments to car emissions, although fuel blend regulations in California
have been shown to improve air quality (Auffhammer and Kellogg 2011).

28In the 2012 GREET model, developed by Argonne National Laboratory, the SO2 emissions rate is
0.00616 g/mile at 23.4 mpg. This is slightly higher than the Tier 2 allowed 30 ppm which would be 0.00485
g/mile at 23.4 mpg.

29Urban counties are defined as counties which are part of a Metropolitan Statistical Area (MSA).
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mile for each gasoline vehicle only differ across urban and non-urban counties.30

For electric vehicles, determining emissions per mile is more complicated. We begin with

the EPA estimate of MPG equivalent (i.e., the estimated kWh per mile).31 We adjust this

figure to account for the temperature profile of each county, because electric vehicles use

more electricity per mile in cold and hot weather.32 Next we use an econometric model

(described below) to estimate the marginal emissions factors (e.g., tons per kWh) for each of

our pollutants at each of 1486 power plants due to an increase in regional electricity load. We

combine these estimates with an assumed daily charging profile to determine the emissions

per mile at each power plant due to the charging of an electric vehicle in a given county.33

The implication of this procedure is that emissions per mile for each electric vehicle may

differ across any two counties.

Next we map emissions into damages. For CO2, we use the EPA social cost of carbon of

$41 per ton.34 For local pollutants, we use the AP2 model. This model calculates damages

per unit of a given local pollutant in each county (as described below). By multiplying

emissions per mile and damages per unit emitted, and then aggregating across pollutants

(and, for electric vehicles, across power plants) we obtain the full damages per mile for each

gasoline vehicle and each electric vehicle in each county. As in the theoretical section, these

full damages account for global effects, local effects in the given county, and local effects in

other counties.

To analyze any policy which affects multiple counties, we need a sense of the relative

importance of driving in the counties. We weight all summary statistics using Vehicle Miles

Travelled (VMT) in each county, as estimated by the EPA for their Motor Vehicle Emission

30The emissions per mile for our gasoline vehicles are reported in Table A in Supplementary Appendix E.
31We use the combined city/highway EPA figure and do not differentiate electric vehicles by urban and

rural since regenerative braking leads to smaller differences in city and highway efficiencies.
32This is due to both the decreased performance of the battery and the increased demand for climate control

(Yuksel and Michalek 2015). Temperature has a smaller effect on the performance of gasoline vehicles, so
we do not adjust gasoline MPG for temperature. We model the electric vehicle range loss as a Gaussian
distribution with no range loss at 68°F but a 33% range loss at 19.4°F. See Supplementary Appendix G. We
explore how sensitive our findings are to this assumption, as well as others, in Section 4.4.

33We analyze eight charging profiles: our baseline profile using estimates from Electric Power Research
Institute (EPRI) (see Figure B in Supplementary Appendix F), a flat profile, and six profiles with non-
overlapping four-hour charging blocks.

34See http://www.epa.gov/climatechange/EPAactivities/economics/scc.html. We use the year 2015, 3%
discount rate estimate and convert it to 2014 dollars. Moreover, all monetary values in all model components
are also converted to 2014 dollars.
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Simulator (MOVES).35

3.1 Econometric model: estimation of marginal emission factors

from electricity use

To determine the emissions that result from electricity use to charge an electric vehicle, we

must determine which power plants respond (and how they respond) to increases in electricity

usage at different locations. The electricity grid in the contiguous U.S. consists of three main

“interconnections”: Eastern, Western, and Texas. Since there are substantial electricity flows

within each interconnection but quite limited flows between interconnections, we model each

interconnection separately. Within each interconnection, transmission constraints prevent

the free flow of electricity throughout the interconnection. Accordingly, we follow the North

American Electric Reliability Corporation (NERC) and divide the three interconnections

into nine distinct regions.36 We use these nine NERC regions to define the spatial scale

for measuring emissions per kWh. In particular, our estimation strategy assumes that an

electric vehicle charged at any county within a given NERC region has the same marginal

emission factors as an electric vehicle charged at any other county within the same region.37

Our data consists of hourly emissions of CO2, SO2, NOx, and PM2.5 at 1486 power plants

as well as hourly electricity consumption (i.e., electricity load) for each of our nine NERC

regions, for the years 2010-2012.38 We use these data to estimate the effect of electricity

load on emissions, employing methods similar to Graff Zivin et al (2014) and Holland and

Mansur (2008). Like them, we allow for an integrated market where electricity consumed

within an interconnection may be provided by any power plant within that interconnection.

In contrast, however, we estimate the effect of changes in electricity load separately for each

power plant in the interconnection.

35If vehicle life and miles driven per year per vehicle are the same across counties, then these weights are
equivalent to the weights αi (the number of new vehicle buyers) used in the theoretical model.

36See Supplementary Appendix H for our procedure for assigning counties to NERC regions.
37There are some data on electricity load at NERC sub-regions. Due to a high degree of multi-collinearity,

our estimation strategy would likely not work at this level of disaggregation.
38CO2, SO2, and NOx data are directly from the EPA CEMS. We construct hourly PM2.5 from hourly

generation and annual PM2.5 emissions rates. Power plant emissions of VOCs are negligible. More details
about this data are in Supplementary Appendix I.
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The dependent variable in our analysis, yit, is power plant i’s hourly emissions (CO2,

SO2, NOx, or PM2.5) at time t. For each power plant, we regress the dependent variable

on the contemporaneous electricity load in each of the regions within the power plant’s

interconnection. To account for different charging profiles, the coefficients on load vary by

hour of the day. The regression includes fixed effects for each hour of the day interacted

with the month of the sample. We regress:

yit =
24

∑
h=1

J(i)

∑
j=1

βijhHOURhLOADjt +
24

∑
h=1

36

∑
m=1

αihmHOURhMONTHm + εit, (1)

where J(i) equals the number of regions in the interconnection in which power plant i is

located, HOURh is an indicator variable for hour of the day h, MONTHm indicates month of

the sample m, and LOADjt is the electricity consumed in region j at time t. The coefficients

of interest are the marginal emission factors βijh, which represent the change in emissions at

plant i from an increase in electricity usage in region j in hour of the day h.

3.2 The AP2 model: determining damages from local air pollution

The AP2 model is an integrated assessment air pollution model.39 AP2 connects reported

emissions (USEPA, 2014) to estimates of ambient concentrations using an air quality model.

In particular, the air quality model maps emissions of ammonia, NOx, SO2, PM2.5, and

VOCs from each reported source of air pollution in the contiguous U.S. into ambient con-

centrations of SO2, O3, and PM2.5 at all receptor locations (i.e., the 3,110 counties in the

contiguous U.S.). The remaining components of AP2 then link these ambient concentrations

to exposures, physical effects, and monetary damages. Welfare endpoints covered by the

model include: human health, crop and timber yields, degradation of buildings and mate-

rial, and reduced visibility and recreation (Muller and Mendlsohn, 2007). Human exposures

are calculated using county-level population data for 2011 which are reported by the U.S.

Census. Crop and timber yields are reported by the U.S. Department of Agriculture. Dam-

ages associated with built structures, visibility, and recreation contribute a very small share

of total damage (Muller et al 2011).

39See Muller (2011). More details of our implementation of AP2 are given in Supplementary Appendix I.
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Exposures are translated into physical effects (e.g., premature deaths, cases of illness,

lost crop yields) using concentration-response functions reported in the related literature. In

terms of the share of total damages, the most important concentration-response functions

are those governing adult mortality. We use results from Pope et al (2002) to specify the

effect of PM2.5 exposure on adult mortality rates and we use results from Bell et al (2004) to

specify the effect of O3 exposure on all-age mortality rates.40 Mortality risks, which comprise

the vast majority of damage from local air pollution, are then expressed in terms of monetary

terms using a $6 million value of a statistical life (VSL). Crop and timber yield effects from

pollution exposure are valued using 2011 market prices.

Because of the focus of this paper on small changes to the vehicle fleet, calculation of

incremental damages per-unit mass emitted is necessary. The algorithm used to compute

damages per ton herein has been used in prior research (Muller and Mendelsohn, 2009; Muller

et al 2011). Briefly, this entails the following steps. With all sources in the U.S. emitting at

their reported level in 2011, exposures, physical effects, and monetary damages are computed.

Then, for an emission from a particular power plant, AP2 adds one ton of SO2, for example,

to reported emissions for 2011. Exposures, physical effects, and monetary damage are re-

computed. The incremental damages per-unit mass is tabulated as the difference in monetary

damage between the baseline case and the add-one-ton case.

Importantly, in computing per-unit emitted damages, AP2 aggregates the difference in

damages across all county receptors affected by the additional ton. As discussed above,

local governments may be more concerned about native damages rather than full damages.

We use the AP2 model in a novel way to determine both types of damages. To determine

full damages, we follow the usual procedure and aggregate damages at all receptors. To

determine native damages, we disaggregate the plume of damages resulting from emissions

at a given source in two ways. For in-state effects, native damages are limited to the change

in damages that occur within the state of emission. For in-county effects, native damages

encompass damages which occur within the county of emission.

40In our sensitivity analysis, we study a more recent concentration response function (Roman et al. 2008).
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4 Results

4.1 Environmental benefits of electric vehicles

The environmental benefits of electric vehicles depends on the difference between damages

from gasoline and electric vehicles. We begin with damages from electric vehicles. The right

panel of Figure 1 illustrates our baseline estimates of the damages (in cents per mile) for the

2014 electric Ford Focus by county.41 The variation is largely driven by the NERC regions,

although damages do vary within a region due to our county-specific temperature correction.

Table 1 summarizes the data in Figure 1 and shows sensitivity with respect to charging

profiles.42 In the baseline EPRI profile, mean damages are 2.6 cents per mile (the equivalent

of 8.1 cents per kWh) but range from one cent or less per mile in California and the West

(WECC) to over four cents per mile in the Midwest (MISO). These regional differences in

emissions reflect the pollution intensity of the fuels used in each region’s generating capacity

as well as its electricity imports from other regions. There is some variation in damages

across the charging profiles. Our baseline results are based on the EPRI charging profile, in

which most electric vehicle charging occurs at night. However, damages could be reduced

in the Midwest (MISO) by over 1.5 cents per mile by charging between 1pm and 4pm, for

example. But generally, variation across charging profiles is much smaller than the variation

across NERC regions.

The left columns in Table 2a summarize the distribution of damages across counties for

the electric Ford Focus as well as all other 2014 model year electric vehicles. For the electric

Ford Focus, the mean is 2.59 cents per mile with a range from under one cent (in the West)

to almost 5 cents (in the Midwest). The difference across vehicles is due solely to differences

in their efficiency (in kWh per mile). For example, the BYD e6 (the dirtiest electric vehicle)

uses approximately twice as many kWh per mile as the Chevy Spark (the cleanest electric

vehicle). Correspondingly, the mean, minimum, and maximum damages of the BYD e6 are

approximately double those of the Chevy Spark.

We now turn to the damages from gasoline vehicles. The left panel of Figure 1 illustrates

41See Supplementary Appendix Q for full page color versions of all figures.
42All results are in 2014$ and all summary statistics are weighted by VMT.
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the damages (in cents per mile) for the gasoline Ford Focus by county. The counties with

large damages correspond to major population centers because air pollution damages are

mostly comprised of premature mortality risks. These damages are summarized in the middle

columns of Table 2a. For the gasoline Ford Focus, mean damages are 1.86 cents per mile

(the equivalent of $0.51 per gallon) but range from about a cent per mile to over four cents

per mile.43

Notice that there is substantial overlap in the distributions of damages from gasoline and

electric vehicles. If these damages were highly correlated, then the environmental benefits

of an electric vehicle would be small in most counties. In fact, the damages are not highly

correlated (the correlation is 0.07). As a result, the environmental benefits vary substantially,

as shown in the right columns of Table 2a. For example, gasoline vehicle damages are large

in Los Angeles (due to the large population and properties of the airshed) but electric vehicle

damages are small (due to the clean Western power grid). In this situation, the environmental

benefits are almost equal to gasoline damages (i.e., three to four cents per mile) and hence

electric vehicles have substantial environmental benefits. The opposite occurs in the upper

Midwest where gasoline vehicle damages are small (due to low population densities) but

electric vehicle damages are large (due to the prevalence of coal-fired generation in the

region and the temperature adjustment to electric vehicle range). Here the environmental

benefits of an electric vehicle are negative, and is almost equal to the electric vehicle damages.

Overall, the environmental benefits are negative on average for each of the electric vehicles in

Table 2a.44 The electric Ford Focus is the median electric vehicle in terms of environmental

benefits, and we focus on it throughout the results section.

Table 2b decomposes the environmental benefits into global benefits and local benefits.

Just about every electric vehicle, in just about every place, creates global environmental

benefits relative to gasoline vehicles. In contrast, the local environmental benefits from elec-

tric vehicles can be positive or negative depending on the place. But on average, for all

electric vehicles, the negative local environmental benefits outweighs the positive global en-

43Mean damages per gallon of gasoline range from $0.48 to $0.62 across the vehicles. For the Ford Focus,
damages across counties range from $0.37 to $1.12 per gallon.

44This is due in large part to the fact that only 30% of the VMT occurs in the three regions with the
lowest marginal damages from electricity (see the last column of Table 1).
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vironmental benefits. Focusing solely on global environmental benefits provides a misleading

impression of the environmental consequences of electric vehicles.45

Using Proposition 2, we can convert the environmental benefits into the second-best

purchase subsidy by assuming that both the electric vehicle and the gasoline vehicle are

driven 150,000 miles.46 Figure 2 shows the second-best subsidies by county. Except for a few

counties around New York City and Atlanta, the subsidy is negative throughout the eastern

part of the country (i.e., it is a tax on the purchase of electric vehicles). The subsidy is

large and negative in the Upper Midwest. On the other hand, it is positive in most places in

the West, and quite large in many counties in California. Overall, the second-best subsidy

ranges from about positive $5,000 to negative $5,000.

In Table 3, we aggregate to the level of Metropolitan Statistical Area (MSA). The MSAs

with the highest environmental benefits are all in California because electricity generation in

the West does not produce much air pollution. In these MSAs, the environmental benefits

are about two to three cents per mile (a second-best subsidy of up to $5000). The MSAs

with the lowest environmental benefits are all in the upper Midwest, again because of the

prevalence of coal-fired power stations. Here the environmental benefits are negative three

cents per mile (a second-best purchase tax of about $4000). Other large MSAs can have

either positive or negative environmental benefits. New York and Chicago have some of

the largest damages from gasoline vehicles, but environmental benefits from electric vehicles

are small or negative due to the large damages from electric vehicles. Electric vehicles

have substantial environmental benefits in the major Texas MSAs, due to relatively low

electric vehicle damages in Texas. However, for non-urban regions as well as for MSAs in

the Southeast, Northeast, and Midwest, the benefits from electric vehicles are negative.

Table 4 contains a similar analysis at the state level. Compared to MSAs, the environ-

mental benefits of electric vehicles are smaller at the state level because of negative benefits

in non-urban areas. The largest environmental benefits are in California (a second-best sub-

45Several prominent online sites that compare gasoline and electric vehicles (EPA, Union of Concerned
Scientists) only consider global environmental benefits.

46We assume both vehicles have 10 year lifetimes, regardless of the number of miles driven, and that both
are driven 15,000 miles a year in the absence of any taxes on miles. In practice, vehicle life depends on both
years and miles driven. Moreover, it is not clear whether electric vehicles will be driven more (due to lower
costs per mile) or less (due to the inconvenience of charging) than gasoline vehicles.
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sidy of $3,000) and other Western states. The lowest benefits are in the Upper Midwest

(a second-best tax of almost $5,000 in North Dakota.) There are only 11 states in which

the environmental benefits are positive, and Texas is the only high VMT state outside the

Western interconnection in which the environmental benefits are positive. The left panel

of Figure 3 shows the second-best purchase subsidy by state. When driven in the average

state, a 2014 electric Ford Focus causes $1095 more environmental damages over its driving

lifetime than the equivalent gasoline Ford Focus.47

4.2 Exporting pollution: full and native damages

Although both gasoline and electric vehicles export pollution, electric vehicles export pollu-

tion to a remarkable degree (the grid itself is distributed and emissions from power plants

are released from tall smokestacks intended to disperse pollutants over a wide area).48 To

illustrate this discrepancy, we first analyze transport of a specific pollutant from a specific

county. The left panel in Figure 4 illustrates the change in PM2.5 associated with driv-

ing gasoline-powered Ford Focus vehicles in Fulton County Georgia. Most of the increase in

PM2.5 is centered within a few nearby counties. The right panel in Figure 4 shows the change

in PM2.5 associated with equivalent driving by electric powered Ford Focus charged in the

same county. The spatial footprint of PM2.5 in this case encompasses the entire eastern U.S.

Our definition of native damages allows a more comprehensive analysis of pollution ex-

port. Table 5 shows native damages at both the state and county levels for both electric

and gasoline vehicles. For electric vehicles, full damages from local pollutants are 1.7 cents

per mile on average. Native state damages are only 0.15 cents per mile, and native county

damages are only 0.02 cents per mile. Thus on average 91% of electric vehicle damages from

local pollutants are exported from the state and 99% of are exported from the county. Local

damages from gasoline vehicles are exported to a much smaller extent. On average only 19%

of these damages are exported from a state and only 57% are exported from a county.

47Although our main focus is on variation from this average, and the main focus in Michalek et al (2011)
is on life-cycle costs, we can compare our results to theirs. They find, on average, a battery electric vehicle
causes $181 more environmental damages over its driving lifetime than a gasoline vehicle. See Supplementary
Appendix O for details.

48 Similarly, any electricity consuming good will export pollution.
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Using native damages rather than full damages changes the environmental benefits cal-

culation quite dramatically, especially at the lower tail of the distribution. In this lower tail,

gasoline full damages are small and electric full damages are large. Because most electric

vehicle damages are exported, both native gasoline damages and native electric damages are

small. This implies that the lower tail of environmental benefits moves from approximately

-3.6 cents per mile to approximately -0.06 cents per mile for county-level native damages.

In contrast, at the the upper tail of the distribution, electric vehicle damages were already

low, so accounting for native damages has a smaller impact on the environmental benefits.

On average, the environmental benefits calculated using native damages is positive at both

the state and county level. Correspondingly, as illustrated in the right panel of Figure 3, the

state level second-best purchase subsidy, using native damages, is positive in 32 out of 48

states.

Do state policymakers place greater emphasis on full or native damages when considering

electric vehicle subsidies? A number of states have implemented subsidies for the adoption of

electric vehicles, above and beyond the federal subsidy, such as California ($2500), Colorado

($6000), Georgia ($5000), Illinois ($4000), and Maryland ($3000). In addition, some states

offer a variety of other incentives, including carpool lane access, electricity discounts, and

parking benefits.49 As shown in supplementary Appendix J, both actual subsidies and the

number of other incentives are more highly correlated with our calculated native damage

subsidy than with our calculated full damage subsidy. This evidence suggests that native

damages may help explain state policymakers’ support for electric vehicle subsidies.

4.3 State and county differentiated policies

Our analysis shows that the environmental benefits of electric vehicles vary substantially

across locations. This raises the question of whether differentiated policies can lead to large

enough welfare gains to offset any additional implementation costs. To calculate these welfare

gains, we calibrate the discrete choice model developed in Section 2.50 In addition to electric

49The Department of Energy maintains a database of alternative fuels policies by state:
http://www.afdc.energy.gov/laws/matrix?sort by=tech. A few states impose a special registration fee for
electric vehicles. Our data accounts for policies in place on July 28, 2014.

50 See Supplementary Appendix K for more details.
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vehicle purchase subsidies, we also consider fuel-specific taxes on miles driven (i.e. VMT

taxes), because such taxes at the county level correspond to first-best policy in our model.

Table 6a shows the deadweight losses for differentiated VMT tax policies. County-specific

taxes on electric miles and gasoline miles set at the Pigovian levels tei = δei and tgi = δgi have

zero deadweight loss. To calculate deadweight losses of other policies, we need to specify the

share of new vehicle purchases that would be electric under a default policy in which there

is no subsidy at all (or business as usual.) If the share would be 2%, we refer to this as the

2% BAU EV share case. Given a 2% BAU EV share, state-specific taxes have a deadweight

loss of $92 million per year, and uniform federal taxes has a deadweight loss of $191 million

per year.51 This implies a gain from differentiation of $100 million (moving from federal to

state) and of $191 million (moving from federal to county). The middle and right columns

of Table 6a show differentiated policies in which there is only a single tax on one of the fuels.

The second-best single tax is smaller than the Pigovian tax, because consumers can avoid

taxation by substituting into the untaxed vehicle (see Supplementary Appendix L). For single

tax policies, the gains from differentiation are on the order of $25-$200 million. However, the

deadweight losses are large particularly for taxes on electric miles only ($1.7 billion). The

last three rows of Table 6a show differentiated taxes based on native damages. The gains

from differentiation are small or even negative. These policies lead to large deadweight losses

($0.7-$1.5 billion), because taxes based on native damages are much too low.

Table 6b shows the deadweight losses for differentiated electric vehicle purchase subsidies.

Gains from differentiation are relatively small: on the order of $10-$60 million at 2% BAU EV

share. These gains are much smaller than the gains from differentiation of VMT taxes. The

distribution of environmental benefits is right skewed. Because the probability of adopting

the gas vehicle is close to one, it follows from Proposition 2 that this skewness leads to an

increase in the gains from differentiation. Deadweight losses from electric vehicle subsidies

are large: around $1.8 billion per year. Electric vehicle subsidies based on native damages

have similarly large deadweight losses and small gains from differentiation.

Finally, Table 6b shows the deadweight loss from the current federal policy of a $7500

subsidy on the purchase on an electric vehicle and the deadweight loss from the default no-

51For context, annual vehicle sales are approximately 15 million in the United States.
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subsidy policy. The deadweight loss from the current federal subsidy is $3.4 billion per year

at 2% BAU EV share. This exceeds the deadweight loss from the no-subsidy policy by $1.6

billion per year. The BAU EV shares shown in the table represent plausible shares in the

near future and are appropriate for evaluating policy looking forward. To evaluate the recent

past, we calculate deadweight losses of the two policies for a BAU EV share of 0.375% which

is consistent with the actual 2014 electric vehicle market share of approximately 0.75%.52

The deadweight loss from the current federal subsidy is $2.0 billion and the deadweight loss

from the no-subsidy policy is $1.7 billion. Regardless of BAU EV share, the current federal

subsidy has larger deadweight loss than the no subsidy policy. And the welfare difference

between the two polices increases substantially as the BAU EV share increases.

4.4 Sensitivity analysis

Our analysis takes data from a number of different sources, uses estimated coefficients from

regressions in the electricity model and the AP2 model, and makes assumptions about vari-

ables such as charging behavior and the effects of temperature on electric vehicle range.

Although there is uncertainty associated with each of these factors, we do not attempt to

assign standard errors to our results. Instead we perform a sensitivity analysis to see the

effects of various deviations from our baseline model.53

The first parameter that we explore in Table 7 is the social cost of carbon (SCC). Our

baseline value is $41. A higher value for the SCC leads to higher damage estimates for both

electric and gasoline vehicles, but the environmental benefits are not highly sensitive to the

assumed SCC.

Several of our assumptions affect only one type of vehicle. On the electric side, our base-

line calculation makes a temperature adjustment to account for the reduced performance of

electric vehicles in weather extremes and uses the EPRI charging profile. Table 7 shows that

our results are not sensitive to these choices. On the gasoline side, our baseline calculation

differentiates the MPG of gasoline vehicles by city and highway driving and assumes emis-

sions throughout the lifetime of the vehicle are the same as when new. Using an average

52Li et al (2015) estimate that 50% of electric vehicle sales are due to the subsidy.
53Additional sensitivity for the welfare analysis is in Supplementary Appendix K.
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MPG instead leads to slightly lower gasoline vehicle damages. Doubling emissions rates for

local pollutants primarily affects the upper tail of the gasoline vehicle damages and hence

the upper tail of the environmental benefits.

Another set of assumptions relate to parameters in the AP2 model. In particular, in

the baseline case, AP2 uses a VSL of approximately $6 million. A lower VSL of about $2

million leads to lower damages for both electric and gasoline vehicles and hence a narrower

distribution for the environmental benefits. Another important parameter in AP2 is the dose-

response function that links PM2.5 exposure to adult mortality. We find that a higher dose

response parameter leads to higher damages for both vehicles which widens the distribution

of environmental benefits.

The next calculation examines changes to the electricity grid and the gasoline vehicle fleet.

Our baseline uses observed power plant emissions in 2010-2012 to estimate the damages from

electric vehicles. New air pollution and climate regulations on power plants will likely lead

to lower emissions in the future. In addition, there is an ongoing transition from coal plants

to gas plants. For a rough estimate of these effects, we model a power grid in which all of

the coal-fired power plants are replaced with new gas-fired power plants. This procedure

implies that the replacement plants would be in the same location and would be dispatched

identically to the old coal-fired plants.54 Turning to the gasoline vehicle fleet, our baseline

uses the gasoline Ford Focus as the comparison vehicle to the electric Ford Focus. New

regulations on gasoline vehicles will likely lead to lower emissions in the future. For a rough

estimate of these effects, we use the Toyota Prius as a proxy for the vehicle of the future.

The effect of these changes on the environmental benefits of electric vehicles is given by

the “Future grid & vehicle” row in Table 7. Damages from both vehicles are lower, and

damages from electric vehicles are much lower. However the mean environmental benefits

of 0.56 cents per mile implies an electric vehicle subsidy of $840, which is still substantially

less than current subsidies.

Finally, we consider statistical uncertainty associated with the marginal damages pro-

54Modeling different plant locations and a new load curve is beyond the scope of the present analysis. Here
we scale the plant-specific coefficients for coal plants by a ratio. The numerator is the average emissions rate
for combined cycle gas turbine plants that started operating after 2007, namely their total emissions in 2010
over their total net generation that year. The denominator is a similar emissions rate for each coal plant in
our sample that is not a co-generation plant.
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duced by AP2 for both gas and electric vehicles. The procedure is described in Supplemen-

tary Appendix I. The results using the 5th and 95th percentiles for the damages are reported

in Table 7.

5 Caveats and other considerations

There are several important caveats to our calculation of the environmental benefits of an

electric vehicle due to decreased air pollution emissions. First, we have only considered

air pollution emissions associated with driving the vehicles. There are other “upstream”

environmental externalities associated with electric and gasoline vehicles.55 It is unlikely,

however, that these upstream externalities have the same degree of heterogeneity found in

the air pollution emissions from driving. So the effect of including them would likely be a

shift in the distribution of second-best subsidies but not a significant change in the variance

of this distribution. Previous research has shown that electric vehicles have approximately

$1500 greater upstream externalities than gasoline vehicles (Michalek et al 2011).56

Second, our analysis is based on a simple snapshot of the electricity grid in the years

2010-2012. We might expect the grid to become cleaner over time by integrating new lower-

emission fuels and technologies. Of course, gasoline vehicles may become cleaner over time

as well. The overall effect on the environmental benefits of electric vehicles will depend on

the relative rates of changes of these two factors. Table 7 has an analysis of a future grid,

but it is important to stress that our estimates are based on the dispatch and emissions of

the electricity grid in 2010-2012.

Third, we focus on the marginal emissions from an increase in the demand for electric

power due to electric vehicles charging. This is appropriate when the electricity demand for

electric vehicles is a small fraction of overall electricity use. In Supplementary Appendix M,

we discuss large scale adoption of electric vehicles.

Fourth, we analyze the environmental benefits of electric vehicles in isolation from other

environmental regulations. In practice, these regulations may impact the market for vehicles

55These include emissions from making vehicles and batteries, extracting oil, refining gasoline, transporting
gasoline to retail stations, mining coal and natural gas, and transporting these resources to electric plants.

56See Supplementary Appendix O. See also Tamayao et al (2015) and the references therein.
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and/or the electricity market, and hence have an effect on the environmental benefits of

electric vehicles.57

Some regulations will have a negative effect on the environmental benefits of electric ve-

hicles. Consider the Corporate Average Fuel Economy (CAFE) standards. CAFE stipulates

that the sales-weighted harmonic mean of MPG for a given manufacturer’s fleet of vehicles

must meet a certain requirement. Electric vehicles are assigned a MPG value for this calcu-

lation. These values are much larger than any existing gasoline vehicle. Assuming that the

CAFE requirement is initially binding, selling an electric vehicle enables manufacturers to

meet a lower standard for the rest of their fleet. Let the CAFE-induced environmental cost

of an electric vehicle be defined as the increase in environmental damage from the rest of

the fleet when an electric vehicle is sold. In Supplementary Appendix N, we determine the

CAFE-induced environmental cost and show that the second-best subsidy on the purchase

of an electric vehicle is decreased by the amount of the CAFE-induced environmental cost.

Applying our baseline values for the Ford Focus, the CAFE-induced environmental cost is

$1555 per vehicle.58 This value is significant in comparison with even the largest second-best

subsidy for an electric vehicle found in our study ($2785, in California).

Other regulations, such as cap and trade programs and Renewable Portfolio Standards

(RPS), will have a positive effect on the environmental benefits. EPA programs cap emissions

of NOx and SO2 and the Regional Greenhouse Gas Initiative caps emissions of CO2 in the

Northeast. In our model of the electricity market, we determine the marginal increase in

emissions due to an increase in electricity consumption. We do not model the constraint

that power plant emissions are capped. During the period of our analysis, permit prices

were exceedingly low in many markets, especially those for SO2. In all permit markets, the

stock of banked allowances was increasing significantly despite low prices. This suggests

that the cap may not have been binding in these markets.59 Nevertheless, in Supplementary

Appendix P, we perform calculations to approximate the effect of binding caps. Under the

assumption that caps on NOx, SO2, and CO2 are all binding, damages from an electric

57In addition, there may be pre-existing distortions in both the electricity market (e.g., regulatory pricing
policy) and the gasoline market (e.g., OPEC.)

58 A more thorough analysis would use a complete model of both supply and demand for the entire new
vehicle market and relax our assumption of constant prices. See also Jenn et al (2016).

59 A non-binding cap may still yield positive permit prices due to transactions costs.
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vehicle decrease from 2.59 cents per mile to 0.94 cents per mile (with ninety-two percent of

this decrease due to the cap on SO2). Equivalently, the second-best subsidy increases from

-$1095 to $1380. Turning to RPS, these programs require a fixed percentage of electricity be

produced by low emission technologies such as solar and wind. In a region with a RPS, an

increase in the electricity load will result in a increase in low emission generation. Therefore,

electric vehicle damages can be scaled by 1−R, where R is the RPS share, if the renewables

operate at the same time and location as EV charging.

In addition to the environmental benefits studied in our paper, there are a variety of other

considerations that are put forth in favor of electric vehicle subsidies. First, reducing the

consumption of oil may generate geo-political benefits, reduced military expenditures, and

economic benefits from insulation to oil price shocks. Michalek et al (2011) determined these

benefits to be approximately $1400. Notice that this number has about the same magnitude,

but the opposite sign, as the difference in upstream externalities between electric and gasoline

vehicles.

Second, electric vehicle subsidies may be justified due to innovation spillovers. If innova-

tion is a public good, then markets may provide too little innovation. Similarly, the inability

of firms to appropriate the full gains from innovation (e.g., consumers may also benefit)

may reduce innovation incentives. Our analysis cannot speak to the appropriateness of these

justifications for electric vehicle subsidies. However, it is worth noting that electric vehicle

subsidies are a “demand pull” innovation policy and hence are subject to all the limitations

of demand pull policies (Jaffe et al 2005).

Third, subsidizing electric vehicles today helps boost demand, which in turn increases

incentives to provide electric vehicle charging infrastructure.60 The increase in demand may

also lead to lower production costs in the future due to learning by doing. Both of these

effects increase adoption in the future, which will presumably be desirable due to a cleaner

electric grid. This argument may indeed have merit, but any such long-term benefits may be

at least partially offset by the short-term costs associated with current electric vehicle use.

Our analysis provides an estimate of these costs.

60Li et al (2015) examine the relative effectiveness of the current policy with alternative policies aimed at
building out the charging network.
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6 Conclusion

The comparison of environmental externalities from driving gasoline and electric vehicles

depends critically on damages from local pollution. Ignoring local pollution leads to an

overestimate of the benefits of electric vehicles and an underestimate of the geographic het-

erogeneity. Accounting for both global and local pollution, we find electric vehicles generate

a negative environmental benefits of 0.73 cents per mile on average relative to comparable

gasoline vehicles. There is considerable variation around this average: electric vehicles used

in Los Angeles, California produce benefits of 3.2 cents per mile while those used in Grand

Forks, North Dakota, produce negative benefits of -3.1 cents per mile. On average, electric

vehicles driven in metropolitan areas generate benefits of about one cent per mile while those

driven outside metropolitan areas generate negative benefits of -1.7 cents per mile.

These findings raise questions regarding the sign, the magnitude, and the one-size-fits-all

nature of the uniform federal subsidy of $7,500 for purchasing a pure electric vehicle. Our

results imply subsidies of -$1095 on average with a range from $2785 in California to -$4964

in North Dakota. Thus environmental benefits from driving cannot, alone, justify the federal

subsidy. As discussed above, other studies have estimated upstream environmental benefits

of electric vehicles of about -$1500 and have estimated benefits of $1400 due to reduced oil

consumption. Combining these three factors cannot justify the federal subsidy. It remains an

open question as to whether or not additional considerations (such as innovation spillovers,

network effects, or learning by doing) generate enough benefits to justify the federal subsidy.

At first blush, our finding of significant geographic heterogeneity in benefits suggests a

need for local discretion. However, the pollution export phenomena we identify calls into

question whether or not local regulation would be effective. In most states, when a consumer

opts for an electric vehicle rather than a gasoline vehicle, they reduce air pollution in their

state. However, in all but eleven states, this purchase makes society as a whole worse off

because electric vehicles tend to export air pollution to other states more than gasoline

vehicles. Given this, states may implement subsidies even though a tax might be more

appropriate. Hence there may be a need for federal policy to account for exported damages.

This suggests the appropriate policy for electric vehicles should be at the federal level, but
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differentiated by location. We find that differentiated taxes on miles driven lead to greater

welfare gains than differentiated subsidies on vehicle purchases. This is not surprising, as

economists have long recognized the superiority of putting a direct price on externalities

relative to other indirect corrective policies. Unfortunately, this insight does not seem to

have had much influence on policy, as political decision makers often implement indirect

policies instead. A consequence of this predilection is that multiple indirect policies may

target the same externalities, as is the case with CAFE standards and purchase subsidies

on electric vehicles. Our analysis suggests that the interaction of these policies may have

significant consequences.

Public policy evaluation is especially difficult and important in contexts characterized

by: (i) strong prior beliefs as to the merits of the policy and/or its targeted outcome, (ii)

complex interactions among economic and physical systems, and (iii) economically significant

outcomes. The federal policy which encourages the purchase of electric vehicles exhibits

each of these traits. Although we have focused on vehicles, there is a broader trend toward

electrification of a variety of forms of transportation. Our methodology, which combines

discrete-choice models, distributed electricity generation, and air pollution models, may

yield a useful template for further analysis of the environmental consequences of this trend.

References

[1] Anderson, S., A. de Palma, and J. Thisse (1992), Discrete choice theory of product
differentiation, Cambridge: MIT Press.

[2] Archsmith, J., A. Kendal, and D. Rapson (2015),“From cradle to junkyard: Assess-
ing the life cycle greenhouse benefits of electric vehicles,” Research in Transportation
Economics, 52:72-90.

[3] Auffhammer, M., and R. Kellogg (2011), “Clearing the Air? The effects of gasoline
content regulation on air quality,” American Economic Review, 101: 2687-2722.

[4] Babaee, S., A. Nagpure, and J. DeCarolis (2014), “How much do electric drive vehicles
matter to future U.S. emissions,” Environmental Science and Technology, 48: 1382-1390.

[5] Banzhaf, H., and B. Chupp (2012), “Fiscal federalism and interjurisdictional externali-
ties: New results and an application to US air pollution,” Journal of Public Economics,
96: 449-464.

28



[6] Bell, M.L., A. McDermott, S. L. Zeger, J. M. Samet, and F. Domenici (2004), “Ozone
and short-term mortality in 95 US urban communities, 1987-2000,” Journal of the Amer-
ican Medical Association, 17: 2372-2378.

[7] Burtraw, D., A. Krupnick, D. Austin, D. Farrel, and E. Mansur (1998), “Costs and
benefits of reducing air pollutants related to acid rain,” Contemporary Economic Policy,
16: 379-400.

[8] De Borger, B. (2001), “Discrete choice models and optimal two-part tariffs in the pres-
ence of externalities: optimal taxation of cars,” Regional Science and Urban Economics,
31: 471-504.

[9] De Borger, B. and I. Mayeres (2007), “Optimal taxation of car ownership, car use and
public transport: Insights derived from a discrete choice numerical optimization model,”
European Economic Review, 51: 1177-1204.

[10] Dubin, J. and D. McFadden (1984), “An econometric analysis of residential electric
appliance holdings and consumption,” Econometrica, 52: 345-362.

[11] Fann, N., C. Fulcher, and B. Hubbell (2009), “The influence of location, source, and
emission, type in estimates of the human health benefits of reducing a ton of air pollu-
tion,” Air Quality, Atmosphere and Health, 2: 169-176.

[12] Fowlie, M. and N. Muller (2013), “Market-based emissions regulation when damages
vary across sources: What are the gains from differentiation?” EI@Haas WP 237.

[13] Fullerton, D. and S. West (2002), “Can taxes on cars and on gasoline mimic an un-
available tax on emissions?” Journal of Environmental Economics and Management,
43: 135-157.

[14] Graff Zivin, J., M. Kotchen, and E. Mansur (2014), “Spatial and temporal heterogene-
ity of marginal emissions: Implications for electric cars and other electricity-shifting
policies,” Journal of Economic Behavior and Organization, 107(A): 248-268.

[15] Grissom, G. (2013), “Determining the optimal subsidy for plug-in electric vehicles in
the United States by county,” Honors Thesis in Economics, The University of North
Carolina at Chapel Hill.

[16] Henry, D., N. Muller, and R. Mendelsohn (2011), “The social cost of trading: Measuring
the increased damages from sulfur dioxide trading in the United States,” Journal of
Policy Analysis and Management, 30(3): 598-612.

[17] Holland, S., and E. Mansur (2008), “Is real-time pricing green? The environmental
impacts of electricity demand variance,” Review of Economics and Statistics, 90(3):
550-561.

[18] Jacobsen, M., C. Knittel, J. Sallee, and A. van Benthem (2015), “Correcting externali-
ties from durable goods in the presence of herterogeneity,” working paper.

29



[19] Jafee, A., R. Newell, and R. Stavins (2005), “A tale of two market failures: Technology
and environmental policy,” Ecological Economics, 54: 164-174.

[20] Jenn, A., I. Azevedo and J. Michalek (2016) “Alternative fuel vehicle adoption increases
fleet gasoline consumption and greenhouse gas emissions under United States corporate
average fuel economy policy and greenhouse gas emissions standards,” Environmental
Science and Technology, DOI: 10.1021/acs.est.5b02842.

[21] Levy, J., L. Baxter, and J. Schwartz (2009),“Uncertainty and variability in health related
camages from coal-fired power plants in the United States,” Risk Analysis, 29: 1000-
1014.

[22] Li, S., L. Tong, J. Xing, and Y. Zhou (2015), “The market for electric vehicles: Indirect
network effects and policy impacts,” working paper, Cornell University.

[23] NAP (2010), “Hidden costs of energy: unpriced consequences of energy production and
use,” The National Academies Press, Washington D.C.

[24] Mauzerall, D., B. Sultan, N. Kim, and D. Bradford (2005), “NOx emissions from large
point sources: Variability in ozone production, resulting health damages and economic
costs,” Atmospheric Environment, 39: 2851-66.

[25] Mendelsohn, R. (1980), “An economic analysis of air pollution from coal-fired power
plants,” Journal of Environmental Economics and Management, 7(1): 30-43.

[26] Mendelsohn, R. (1986), “Regulating heterogeneous emissions,” Journal of Environmen-
tal Economics and Management, 13: 301-312.

[27] Michalek, J., M. Chester, P. Jaramillo, C. Samaras, C. Shiau, and L. Lave (2011),
“Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits”,
Proceedings of the National Academy of Sciences, 108: 16554-16558.

[28] Muller, N. (2011), “Linking policy to statistical uncertainty in air pollution damages.”
The B.E. Press Journal of Economic Analysis and Policy, 11(1), Contributions, Article
32.

[29] Muller, N. and R. Mendelsohn (2007), “Measuring the damages of air pollution in the
United States,” Journal of Environmental Economics and Management, 54: 1-14.

[30] Muller, N. and R. Mendelsohn (2009), “Efficient pollution regulation: getting the prices
right,” American Economic Review, 99: 1714-1739.

[31] Muller, N., R. Mendelsohn, W. Nordhaus (2011), “Environmental accounting for pollu-
tion in the United States economy,” American Economic Review. 101: 1649-1675.

[32] National Academy of Sciences, National Research Council. (NAS NRC) 2010. Hidden
Costs of Energy: unpriced consequences of energy production and use. National Academy
Press, Washington, D.C., USA.

30



[33] Parry, I. and K. Small (2005), “Does Britain or the United States have the right gasoline
tax?” American Economic Review, 95: 1276-1289.

[34] Pope, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, G. D. Thurston
(2002), “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine par-
ticulate air pollution,” J. of the Amer. Medical Association, 287 (9): 1132-1141.

[35] Roman, H.A. K.D. Walker, T.L. Walsh, L. Conner, H.M. Richmond, B.J. Hubbell, P.L.
Kinney (2008), “Expert judgment assessment of the mortality impact of changes in
ambient fine particulate matter in the U.S.” Environmental Science and Technology.
42:2268 – 2274.

[36] Small, K. and H. Rosen (1981), “Applied welfare economics with discrete choice models,”
Econometrica, 49: 105-130.

[37] Tamayao, M., J. Michalek, C. Hendrickson, and I. Azevedo (2015), “Regional variability
and uncertainty of electric vehicle life cycle CO2 emissions across the United States”,
Environmental Science and Technology, 49: 8844-8855.

[38] Tessum, C., J. Hill, and J. Marshall (2014), “Life cycle air quality impacts of conven-
tional and alternative light duty transportation in the United States,” Proceedings of
the National Academy of Sciences, 111: 18490-18495.

[39] Tong, D., N. Muller, D. Mauzerall, and R. Mendelsohn (2006), “Integrated assessment
of the spatial variability of ozone impacts from emissions of nitrogen oxides,” Environ-
mental Science and Technology, 40(5): 1395-1400.

[40] USEPA (2014) National Emissions Inventory (NEI), 2011. Washington, DC: Office of Air
Quality Planning and Standards, Emissions Inventory Group; Emissions, Monitoring,
and Analysis Division.

[41] Weitzman, M. (1974), “Prices vs. quantities,” Review of Economic Studies 41: 477-491.

[42] Yuksel, T. and J. Michalek (2015), “Effects of regional temperature on electric vehi-
cle efficiency, range, and emissions in the United States”, Environmental Science and
Technology, 49: 3974-3980.

31



Figures 

Figure 1: Marginal Damages for Gas and Electric Vehicles  by County 

 

 

Figure 2: Second-Best Electric Vehicle Subsidy by County 
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Figure 3: Second-Best Electric Vehicle Subsidy by State (Full and Native Damages) 

 

 

 

 

Figure 4: Change in PM2.5 from Gasoline v. Electric Vehicle in Fulton County, Georgia 

Notes: The left panel illustrates the change in PM2.5 associated with a fleet of 10,000 gasoline-powered 

Ford Focus vehicles, each driven 15,000 miles in a year in Fulton County.  The right panel illustrates the 

change in PM2.5 associated with the same number of miles driven by electric powered Ford Focus 

vehicles charged in Fulton County, thereby increasing the consumption of electricity in the Southeast 

(SERC). 
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Tables	
  
Table	
  1:	
  Mean	
  damages	
  in	
  cents	
  per	
  mile	
  by	
  electricity	
  demand	
  region	
  for	
  a	
  2014	
  Ford	
  Focus	
  electric	
  
vehicle	
  for	
  different	
  charging	
  profiles.	
  

 
Damages	
  in	
  cents	
  per	
  mile	
  

	
    
Region	
   EPRI	
   Flat	
   Hr	
  1-­‐4	
   Hr	
  5-­‐8	
   Hr	
  9-­‐12	
   Hr	
  13-­‐16	
   Hr	
  17-­‐20	
   Hr	
  21-­‐24	
  

	
  

VMT	
  
(pct)	
  

California	
   0.69	
   0.75	
   0.65	
   0.78	
   0.78	
   0.84	
   0.82	
   0.64	
  
	
  

11%	
  
WECC	
  w/o	
  CA	
   1.03	
   0.92	
   1.18	
   0.98	
   0.84	
   0.76	
   0.73	
   0.99	
  

	
  
11%	
  

ERCOT	
   1.28	
   1.21	
   1.50	
   1.41	
   1.10	
   1.07	
   1.05	
   1.16	
  
	
  

7%	
  
SPP	
   2.24	
   2.74	
   2.07	
   4.91	
   2.30	
   2.89	
   2.39	
   1.89	
  

	
  
4%	
  

FRCC	
   2.48	
   2.14	
   3.21	
   2.36	
   2.25	
   1.39	
   1.53	
   2.11	
  
	
  

6%	
  
SERC	
   2.75	
   2.67	
   2.75	
   2.26	
   2.72	
   2.96	
   2.63	
   2.71	
  

	
  
22%	
  

NPCC	
   3.11	
   2.75	
   4.19	
   3.75	
   1.61	
   2.12	
   2.49	
   2.35	
  
	
  

9%	
  
RFC	
   3.64	
   3.55	
   3.42	
   3.38	
   3.83	
   3.06	
   3.43	
   4.15	
  

	
  
17%	
  

MISO	
  &	
  MRO	
   4.29	
   3.52	
   5.63	
   3.91	
   3.03	
   2.57	
   2.32	
   3.69	
  
	
  

14%	
  

	
             Total	
   2.59	
   2.41	
   2.90	
   2.56	
   2.28	
   2.15	
   2.12	
   2.46	
  
	
  

100%	
  
	
  

Notes:	
  The	
  regions	
  are	
  ordered	
  by	
  the	
  damage	
  per	
  mile	
  under	
  the	
  EPRI	
  charging	
  profile.	
  	
  The	
  EPRI	
  
charging	
  profile	
  is	
  illustrated	
  in	
  Figure	
  B	
  in	
  Supplementary	
  Appendix	
  F;	
  the	
  Flat	
  charging	
  profile	
  assumes	
  
charging	
  is	
  equally	
  likely	
  across	
  hours;	
  and	
  other	
  profiles	
  assume	
  charging	
  occurs	
  only	
  in	
  the	
  indicated	
  
hours.	
  	
  Damages	
  (in	
  cents	
  per	
  mile)	
  are	
  weighted	
  across	
  counties	
  by	
  passenger	
  vehicle	
  VMT.	
  	
  
“California”	
  is	
  the	
  California	
  ISO;	
  “WECC	
  w/o	
  CA”	
  is	
  the	
  Western	
  US	
  excluding	
  California;	
  “ERCOT”	
  is	
  
Texas;	
  “SPP”	
  is	
  Kansas	
  and	
  Oklahoma;	
  “FRCC”	
  is	
  Florida;	
  “SERC”	
  is	
  the	
  Southeast;	
  “NPCC”	
  is	
  the	
  
Northeast;	
  “RFC”	
  is	
  the	
  Mid-­‐Atlantic	
  and	
  Midwest;	
  and	
  “MISO”	
  is	
  the	
  upper	
  Midwest.	
  	
  See	
  Figure	
  C	
  in	
  
Supplementary	
  Appendix	
  H	
  for	
  a	
  map	
  of	
  the	
  regions.	
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Table	
  2a:	
  Summary	
  statistics	
  of	
  damages	
  and	
  environmental	
  benefits	
  in	
  cents	
  per	
  mile	
  for	
  2014	
  electric	
  
vehicles	
  and	
  substitute	
  2014	
  gasoline	
  vehicles	
  across	
  counties	
  

	
   Electric	
  Vehicle	
   	
   Gasoline	
  Vehicle	
   	
   Environmental	
  Benefits	
  	
  

Vehicle	
   mean	
   min	
   max	
   	
   mean	
   min	
   max	
   	
   mean	
   min	
   max	
  

Chevy	
  Spark	
   2.28	
   0.59	
   4.17	
   	
   1.69	
   0.95	
   4.30	
   	
   -­‐0.60	
   -­‐3.15	
   3.08	
  
Honda	
  Fit	
   2.30	
   0.60	
   4.20	
   	
   1.93	
   1.13	
   4.83	
   	
   -­‐0.37	
   -­‐3.00	
   3.60	
  
Fiat	
  500e	
   2.34	
   0.61	
   4.27	
   	
   1.74	
   0.93	
   4.62	
   	
   -­‐0.60	
   -­‐3.26	
   3.33	
  
Nissan	
  Leaf	
   2.38	
   0.62	
   4.35	
   	
   1.23	
   0.74	
   3.53	
   	
   -­‐1.16	
   -­‐3.52	
   2.22	
  
Mitsubishi	
  i-­‐Miev	
   2.42	
   0.63	
   4.41	
   	
   1.69	
   0.95	
   4.30	
   	
   -­‐0.73	
   -­‐3.40	
   3.05	
  
Smart	
  fortwo	
   2.54	
   0.66	
   4.63	
   	
   1.67	
   0.98	
   4.50	
   	
   -­‐0.87	
   -­‐3.57	
   3.13	
  
Ford	
  Focus	
   2.59	
   0.67	
   4.72	
   	
   1.86	
   1.03	
   4.32	
   	
   -­‐0.73	
   -­‐3.63	
   3.16	
  
Tesla	
  S	
  (60	
  kWh)	
   2.82	
   0.73	
   5.15	
   	
   2.44	
   1.28	
   5.48	
   	
   -­‐0.38	
   -­‐3.78	
   4.28	
  
Tesla	
  S	
  (85	
  kWh)	
   3.06	
   0.80	
   5.59	
   	
   2.67	
   1.48	
   5.74	
   	
   -­‐0.39	
   -­‐4.02	
   4.55	
  
Toyota	
  Rav4	
   3.58	
   0.93	
   6.52	
   	
   2.09	
   1.20	
   5.02	
   	
   -­‐1.49	
   -­‐5.23	
   3.50	
  
BYD	
  e6	
   4.35	
   1.13	
   7.94	
   	
   2.09	
   1.20	
   5.02	
   	
   -­‐2.27	
   -­‐6.64	
   3.30	
  
	
  

Table	
  2b:	
  Decomposition	
  of	
  environmental	
  benefits	
  into	
  global	
  and	
  local	
  environmental	
  benefits.	
  

	
   Environmental	
  Benefit	
   	
   Global	
  Env.	
  Benefits	
   	
   Local	
  Env.	
  Benefits	
  

Vehicle	
   mean	
   min	
   max	
   	
   mean	
   min	
   max	
   	
   mean	
   min	
   max	
  

Chevy	
  Spark	
   -­‐0.60	
   -­‐3.15	
   3.08	
   	
   0.35	
   -­‐0.14	
   0.72	
   	
   -­‐0.95	
   -­‐3.01	
   2.37	
  
Honda	
  Fit	
   -­‐0.37	
   -­‐3.00	
   3.60	
   	
   0.52	
   0.02	
   0.89	
   	
   -­‐0.89	
   -­‐3.02	
   2.71	
  
Fiat	
  500e	
   -­‐0.60	
   -­‐3.26	
   3.33	
   	
   0.32	
   -­‐0.19	
   0.71	
   	
   -­‐0.92	
   -­‐3.08	
   2.63	
  
Nissan	
  Leaf	
   -­‐1.16	
   -­‐3.52	
   2.22	
   	
   -­‐0.09	
   -­‐0.40	
   0.28	
   	
   -­‐1.07	
   -­‐3.16	
   1.99	
  
Mitsubishi	
  i-­‐Miev	
   -­‐0.73	
   -­‐3.40	
   3.05	
   	
   0.30	
   -­‐0.21	
   0.69	
   	
   -­‐1.04	
   -­‐3.20	
   2.36	
  
Smart	
  fortwo	
   -­‐0.87	
   -­‐3.57	
   3.13	
   	
   0.18	
   -­‐0.24	
   0.57	
   	
   -­‐1.06	
   -­‐3.34	
   2.57	
  
Ford	
  Focus	
   -­‐0.73	
   -­‐3.63	
   3.16	
   	
   0.44	
   -­‐0.21	
   0.89	
   	
   -­‐1.17	
   -­‐3.43	
   2.28	
  
Tesla	
  S	
  (60	
  kWh)	
   -­‐0.38	
   -­‐3.78	
   4.28	
   	
   0.83	
   -­‐0.07	
   1.36	
   	
   -­‐1.21	
   -­‐3.72	
   2.93	
  
Tesla	
  S	
  (85	
  kWh)	
   -­‐0.39	
   -­‐4.02	
   4.55	
   	
   0.96	
   0.01	
   1.54	
   	
   -­‐1.36	
   -­‐4.04	
   3.02	
  
Toyota	
  Rav4	
   -­‐1.49	
   -­‐5.23	
   3.50	
   	
   0.23	
   -­‐0.51	
   0.81	
   	
   -­‐1.72	
   -­‐4.73	
   2.71	
  
BYD	
  e6	
   -­‐2.27	
   -­‐6.64	
   3.30	
   	
   -­‐0.04	
   -­‐0.88	
   0.65	
   	
   -­‐2.23	
   -­‐5.78	
   2.66	
  
	
  

Notes:	
  Damages	
  are	
  from	
  power	
  plant	
  emissions	
  or	
  tailpipe	
  emissions	
  of	
  NOx,	
  VOCs,	
  PM2.5,	
  SO2,	
  and	
  
CO2e.	
  	
  Electric	
  vehicles	
  assume	
  the	
  EPRI	
  charging	
  profile.	
  	
  Substitute	
  vehicles	
  are	
  defined	
  as	
  the	
  identical	
  
make	
  where	
  possible.	
  	
  The	
  substitute	
  vehicle	
  for	
  the	
  Nissan	
  Leaf	
  is	
  the	
  Toyota	
  Prius;	
  for	
  the	
  Mitsubishi	
  i-­‐
Miev	
  is	
  the	
  Chevy	
  Spark;	
  for	
  the	
  Tesla	
  Model	
  S	
  is	
  the	
  BMW	
  740	
  or	
  750;	
  and	
  for	
  the	
  BYD	
  e6	
  is	
  the	
  Toyota	
  
Rav4.	
  	
  Damages	
  are	
  in	
  cents	
  per	
  mile	
  and	
  are	
  weighted	
  across	
  counties	
  by	
  VMT.	
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Table	
  3:	
  	
  Environmental	
  benefits	
  in	
  cents	
  per	
  mile	
  by	
  Metropolitan	
  Statistical	
  Areas	
  for	
  a	
  2014	
  Ford	
  
Focus	
  (electric	
  v.	
  gasoline)	
  	
  

Metropolitan	
  Statistical	
  Area	
  

Environmental	
  
benefits	
  per	
  
mile	
  

VMT	
  
(pct)	
  

Damage	
  
per	
  mile	
  
(gasoline)	
  

Damage	
  
per	
  mile	
  
(electric)	
  

	
  
Purchase	
  
Subsidy	
  

Highest	
  Benefit	
  MSAs	
   	
   	
   	
   	
   	
  
Los	
  Angeles,	
  CA	
   3.16	
   2.69%	
   3.85	
   0.69	
   $4,743	
  
Oakland,	
  CA	
   2.21	
   0.75%	
   2.89	
   0.68	
   $3,315	
  
San	
  Jose,	
  CA	
   2.11	
   0.54%	
   2.80	
   0.69	
   $3,166	
  
San	
  Francisco,CA	
   1.91	
   0.45%	
   2.59	
   0.68	
   $2,867	
  
Santa	
  Ana,	
  CA	
   1.87	
   0.93%	
   2.54	
   0.67	
   $2,800	
  

Other	
  High	
  VMT	
  MSAs	
  
	
   	
   	
   	
  

	
  
San	
  Diego,	
  CA	
   1.85	
   0.97%	
   2.53	
   0.68	
   $2,770	
  
Riverside,	
  CA	
   1.17	
   1.35%	
   1.88	
   0.71	
   $1,756	
  
Phoenix,	
  AZ	
   0.74	
   1.16%	
   1.77	
   1.03	
   $1,112	
  
Houston,	
  TX	
   0.67	
   1.74%	
   2.01	
   1.35	
   $1,003	
  
Dallas,	
  TX	
   0.62	
   1.52%	
   1.91	
   1.29	
   $926	
  
New	
  York,	
  NY	
   -­‐0.02	
   1.97%	
   3.16	
   3.18	
   -­‐$32	
  
Atlanta,	
  GA	
   -­‐0.36	
   1.92%	
   2.38	
   2.73	
   -­‐$535	
  
Chicago,	
  IL	
   -­‐0.74	
   1.75%	
   2.98	
   3.72	
   -­‐$1,116	
  
Washington	
  DC-­‐VA	
   -­‐0.89	
   1.40%	
   2.19	
   3.08	
   -­‐$1,335	
  
Minneapolis,	
  MN	
   -­‐2.39	
   1.06%	
   2.08	
   4.46	
   -­‐$3,578	
  

U.S.	
  and	
  Non-­‐Urban	
   	
   	
   	
   	
   	
  
U.S.	
  Average	
   -­‐0.73	
   100%	
   1.86	
   2.59	
   -­‐$1,095	
  
Non-­‐urban	
   -­‐1.67	
   20%	
   1.20	
   2.87	
   -­‐$2,500	
  

Lowest	
  Benefit	
  MSAs	
   	
   	
   	
   	
   	
  
St.	
  Cloud,	
  MN	
   -­‐2.87	
   0.08%	
   1.62	
   4.49	
   -­‐$4,310	
  
Bismarck,	
  ND	
   -­‐2.97	
   0.04%	
   1.52	
   4.49	
   -­‐$4,456	
  
Fargo,	
  ND-­‐MN	
   -­‐3.07	
   0.07%	
   1.54	
   4.61	
   -­‐$4,605	
  
Duluth,	
  MN-­‐WI	
   -­‐3.09	
   0.10%	
   1.47	
   4.56	
   -­‐$4,635	
  
Grand	
  Forks,	
  ND-­‐MN	
   -­‐3.14	
   0.03%	
   1.52	
   4.66	
   -­‐$4,711	
  
	
  

Notes:	
  The	
  environmental	
  benefits	
  are	
  the	
  difference	
  in	
  damages	
  between	
  the	
  gasoline-­‐powered	
  Ford	
  
Focus	
  and	
  the	
  electric	
  Ford	
  Focus.	
  	
  Environmental	
  benefits	
  are	
  weighted	
  by	
  VMT	
  by	
  county	
  within	
  each	
  
MSA.	
  	
  Non-­‐urban	
  includes	
  all	
  counties	
  that	
  are	
  not	
  part	
  of	
  an	
  MSA.	
  The	
  vehicle	
  subsidy	
  assumes	
  vehicle	
  
is	
  driven	
  150,000	
  miles.	
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Table	
  4:	
  	
  Environmental	
  benefits	
  in	
  cents	
  per	
  mile	
  by	
  state	
  for	
  a	
  2014	
  Ford	
  Focus	
  (electric	
  v.	
  gasoline)	
  

State	
  

Environmental	
  
benefits	
  per	
  
mile	
  

VMT	
  
(pct)	
  

Damage	
  
per	
  mile	
  
(gasoline)	
  

Damage	
  
per	
  mile	
  
(electric)	
  	
  	
  

	
  
Purchase	
  
Subsidy	
  

Highest	
  Benefit	
  
States	
  

	
   	
   	
   	
   	
  

California	
   1.86	
   11%	
   2.55	
   0.69	
   $2,785	
  
Utah	
   0.73	
   1%	
   1.77	
   1.04	
   $1,089	
  
Colorado	
   0.60	
   2%	
   1.63	
   1.03	
   $902	
  
Arizona	
   0.59	
   2%	
   1.62	
   1.02	
   $889	
  
Washington	
   0.58	
   2%	
   1.59	
   1.02	
   $865	
  
Other	
  High	
  VMT	
  
States	
   	
   	
   	
   	
   	
  
Texas	
   0.34	
   8%	
   1.75	
   1.41	
   $505	
  
Florida	
   -­‐0.70	
   7%	
   1.80	
   2.49	
   -­‐$1,049	
  
Georgia	
   -­‐0.78	
   4%	
   1.96	
   2.74	
   -­‐$1,166	
  
New	
  York	
   -­‐0.91	
   5%	
   2.19	
   3.10	
   -­‐$1,371	
  
North	
  Carolina	
   -­‐1.07	
   4%	
   1.67	
   2.74	
   -­‐$1,611	
  
Virginia	
   -­‐1.20	
   3%	
   1.72	
   2.93	
   -­‐$1,807	
  
Illinois	
   -­‐1.56	
   3%	
   2.31	
   3.87	
   -­‐$2,345	
  
Ohio	
   -­‐1.76	
   4%	
   1.89	
   3.65	
   -­‐$2,640	
  
Pennsylvania	
   -­‐1.78	
   3%	
   1.86	
   3.64	
   -­‐$2,675	
  
Michigan	
   -­‐2.48	
   3%	
   1.76	
   4.24	
   -­‐$3,720	
  
Lowest	
  Benefit	
  
States	
   	
   	
   	
   	
   	
  
South	
  Dakota	
   -­‐2.66	
   0%	
   1.27	
   3.93	
   -­‐$3,992	
  
Minnesota	
   -­‐2.76	
   2%	
   1.72	
   4.48	
   -­‐$4,145	
  
Wisconsin	
   -­‐2.79	
   2%	
   1.59	
   4.37	
   -­‐$4,180	
  
Iowa	
   -­‐2.93	
   1%	
   1.37	
   4.30	
   -­‐$4,394	
  
North	
  Dakota	
   -­‐3.31	
   0%	
   1.27	
   4.58	
   -­‐$4,964	
  
	
   	
   	
   	
   	
   	
  
U.S.	
  Average	
   -­‐0.73	
   100%	
   1.86	
   2.59	
   -­‐$1,095	
  
	
  

Notes:	
  The	
  environmental	
  benefits	
  are	
  the	
  difference	
  in	
  damages	
  between	
  the	
  gasoline-­‐powered	
  Ford	
  
Focus	
  and	
  the	
  electric	
  Ford	
  Focus.	
  	
  Environmental	
  benefits	
  are	
  weighted	
  by	
  gasoline-­‐vehicle	
  VMT	
  within	
  
each	
  state.	
  The	
  vehicle	
  subsidy	
  assumes	
  the	
  vehicle	
  is	
  driven	
  150,000	
  miles.	
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Table	
  5:	
  Native	
  damages	
  in	
  cents	
  per	
  mile	
  by	
  state	
  and	
  county	
  and	
  export	
  percentages	
  

Vehicle	
   Damages	
   mean	
   med	
   std.	
  dev.	
   min	
   max	
  

Electric	
   All	
   2.59	
   2.74	
   1.18	
   0.67	
   4.72	
  

	
  
Non-­‐GHG	
   1.70	
   1.86	
   1.02	
   0.16	
   3.50	
  

	
  
State	
   0.15	
   0.16	
   0.07	
   0.04	
   0.33	
  

	
  
	
  	
  	
  	
  Export	
  %	
   91%	
   91%	
  

	
    
91%	
  

	
  
County	
   0.02	
   0.02	
   0.01	
   0.00	
   0.06	
  

	
  
	
  	
  	
  	
  Export	
  %	
   99%	
   99%	
  

	
    
98%	
  

	
         Gasoline	
   All	
   1.86	
   1.76	
   0.59	
   1.03	
   4.32	
  

	
  
Non-­‐GHG	
   0.53	
   0.36	
   0.52	
   0.01	
   2.92	
  

	
  
State	
   0.43	
   0.26	
   0.51	
   0.00	
   2.76	
  

	
  
	
  	
  	
  	
  Export	
  %	
   19%	
   28%	
  

	
    
5%	
  

	
  
County	
   0.23	
   0.10	
   0.37	
   0.00	
   2.03	
  

	
  
	
  	
  	
  	
  Export	
  %	
   57%	
   72%	
  

	
    
30%	
  

	
         Environmental	
   All	
   -­‐0.73	
   -­‐1.01	
   1.39	
   -­‐3.63	
   3.16	
  
Benefits	
   Non-­‐GHG	
   -­‐1.17	
   -­‐1.48	
   1.19	
   -­‐3.43	
   2.28	
  

	
  
State	
   0.28	
   0.12	
   0.51	
   -­‐0.32	
   2.46	
  

	
  
County	
   0.21	
   0.08	
   0.37	
   -­‐0.06	
   2.00	
  

	
  

Note:	
  Damages	
  in	
  cents	
  per	
  mile.	
  “All”	
  reports	
  damages	
  from	
  all	
  pollutants	
  at	
  all	
  receptors.	
  	
  “Non-­‐GHG”	
  
reports	
  damages	
  from	
  local	
  pollutants	
  (i.e.,	
  excluding	
  CO2)	
  at	
  all	
  receptors.	
  	
  “State”	
  reports	
  damages	
  
from	
  local	
  pollutants	
  from	
  receptors	
  within	
  the	
  same	
  state	
  as	
  the	
  source.	
  	
  “County”	
  reports	
  damages	
  
from	
  local	
  pollutants	
  from	
  receptors	
  within	
  the	
  same	
  county	
  as	
  the	
  source.	
  	
  “State	
  Export	
  %”	
  reports	
  the	
  
share	
  of	
  non-­‐GHG	
  damages	
  which	
  occur	
  at	
  receptors	
  outside	
  the	
  state.	
  	
  “County	
  Export	
  %”	
  reports	
  the	
  
share	
  of	
  non-­‐GHG	
  damages	
  which	
  occur	
  at	
  receptors	
  outside	
  the	
  county.	
  	
  Electric	
  damages	
  assume	
  the	
  
EPRI	
  charging	
  profile.	
  	
  Damages	
  are	
  weighted	
  by	
  VMT.	
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Table	
  6a:	
  Deadweight	
  losses	
  of	
  differentiated	
  VMT	
  taxes	
  	
  

	
   Gas	
  and	
  	
  Electric	
  Tax	
   	
   Gas	
  Tax	
  Only	
   	
   Electric	
  Tax	
  Only	
  

	
   BAU	
  EV	
  Share	
   	
   BAU	
  EV	
  Share	
   	
   BAU	
  EV	
  Share	
  

	
  
1%	
   2%	
   5%	
   	
   1%	
   2%	
   5%	
   	
   1%	
   2%	
   5%	
  

County	
  policies	
   0	
   0	
   0	
   	
   201	
   391	
   905	
   	
   1709	
   1717	
   1740	
  
State	
  policies	
   89	
   92	
   102	
   	
   289	
   482	
   1005	
   	
   1712	
   1721	
   1752	
  
Federal	
  policy	
   162	
   191	
   277	
   	
   343	
   542	
   1095	
   	
   1736	
   1770	
   1874	
  

	
  
	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
  
County	
  (Native)	
   989	
   1073	
   1325	
   	
   	
   	
   	
   	
   	
   	
   	
  
State	
  (Native)	
   1067	
   1153	
   1412	
   	
   	
   	
   	
   	
   	
   	
   	
  
Federal	
  (Native)	
   778	
   809	
   903	
   	
   	
   	
   	
   	
   	
   	
   	
  
	
  

Table	
  6b:	
  Deadweight	
  losses	
  of	
  differentiated	
  electric	
  vehicle	
  purchase	
  subsidies	
  

	
  
BAU	
  EV	
  Share	
  

	
  
1%	
   2%	
   5%	
  

County	
  policies	
   1754	
   1806	
   1960	
  
State	
  policies	
   1758	
   1815	
   1983	
  
Federal	
  policy	
  (-­‐$742	
  subsidy)	
   1783	
   1864	
   2107	
  
	
   	
   	
   	
  
County	
  policies	
  (native	
  damages)	
   1788	
   1874	
   2134	
  
State	
  policies	
  (native	
  damages)	
   1792	
   1881	
   2152	
  
Federal	
  policy	
  (native	
  damages,	
  -­‐$1692	
  subsidy)	
   1785	
   1868	
   2188	
  
	
   	
   	
   	
  
Current	
  Federal	
  Policy	
  ($7500	
  subsidy)	
   2581	
   3459	
   6079	
  
BAU	
  Federal	
  Policy	
  (Zero	
  subsidy)	
   1791	
   1880	
   2148	
  
	
   	
   	
   	
  
	
   	
   	
   	
  
	
  
Notes:	
  Deadweight	
  loss	
  in	
  millions	
  of	
  dollars	
  per	
  year	
  is	
  based	
  on	
  15	
  million	
  annual	
  vehicle	
  sales	
  
normalized	
  to	
  the	
  emissions	
  profile	
  of	
  the	
  Ford	
  Focus.	
  The	
  BAU	
  EV	
  Share	
  is	
  the	
  proportion	
  of	
  electric	
  
vehicles	
  sold	
  if	
  there	
  were	
  no	
  subsidy.	
  	
  This	
  share	
  is	
  determined	
  by	
  the	
  assumed	
  value	
  for	
  𝜇	
  	
  (10664,	
  
10508,10037)	
  which	
  is	
  proportional	
  to	
  the	
  standard	
  deviation	
  of	
  the	
  unobserved	
  relative	
  preference	
  
shock.	
  In	
  Table	
  6a,	
  federal	
  taxes	
  in	
  the	
  joint	
  tax	
  case	
  are	
  1.9	
  cents	
  per	
  mile	
  on	
  gasoline	
  miles	
  and	
  2.6	
  
cents	
  per	
  mile	
  on	
  electric	
  miles.	
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Table	
  7:	
  Sensitivity	
  analysis	
  of	
  damages	
  and	
  environmental	
  benefits	
  in	
  cents	
  per	
  mile	
  for	
  2014	
  electric	
  
and	
  gasoline	
  Ford	
  Focus	
  

	
   Electric	
  Vehicle	
   	
   Gasoline	
  Vehicle	
   	
   Environmental	
  Benefits	
  	
  

	
  
mean	
   min	
   max	
   	
   mean	
   min	
   max	
   	
   mean	
   min	
   max	
  

Baseline	
   2.59	
   0.67	
   4.72	
   	
   1.86	
   1.03	
   4.32	
   	
   -­‐0.73	
   -­‐3.63	
   3.16	
  
Carbon	
  cost	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
	
  	
  	
  SCC=$51	
   2.80	
   0.80	
   5.02	
   	
   2.18	
   1.28	
   4.67	
   	
   -­‐0.62	
   -­‐3.68	
   3.38	
  
	
  	
  	
  SCC=$31	
   2.37	
   0.55	
   4.42	
   	
   1.53	
   0.78	
   3.98	
   	
   -­‐0.84	
   -­‐3.58	
   2.95	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
No	
  temperature	
  
adjustment	
  

2.43	
   0.67	
   3.90	
   	
   1.86	
   1.03	
   4.32	
   	
   -­‐0.57	
   -­‐2.84	
   3.18	
  

Flat	
  charging	
  
profile	
  

2.41	
   0.74	
   3.88	
   	
   1.86	
   1.03	
   4.32	
   	
   -­‐0.55	
   -­‐2.79	
   3.10	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Average	
  MPG	
   2.59	
   0.67	
   4.72	
   	
   1.74	
   1.23	
   4.11	
   	
   -­‐0.85	
   -­‐3.42	
   2.89	
  
Double	
  gasoline	
  
emissions	
  rates	
  

2.59	
   0.67	
   4.72	
   	
   2.39	
   1.05	
   7.24	
   	
   -­‐0.20	
   -­‐3.58	
   5.60	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
$2	
  Million	
  VSL	
   1.61	
   0.71	
   2.64	
   	
   1.54	
   1.02	
   2.55	
   	
   -­‐0.06	
   -­‐1.59	
   1.63	
  
PM	
  dose	
  	
  
response	
  

3.74	
   1.25	
   6.89	
   	
   2.16	
   1.04	
   5.96	
   	
   -­‐1.58	
   -­‐5.76	
   3.91	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
Future	
  grid	
  &	
  
vehicle	
  

0.67	
   0.37	
   1.39	
   	
   1.23	
   0.74	
   3.53	
   	
   0.56	
   -­‐0.57	
   2.73	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  
High	
  estimates*	
   2.65	
   0.69	
   4.46	
   	
   2.13	
   1.15	
   3.90	
   	
   -­‐0.52	
   -­‐2.86	
   2.36	
  
Low	
  estimates*	
   2.53	
   0.68	
   4.15	
   	
   1.59	
   0.78	
   2.90	
   	
   -­‐0.94	
   -­‐3.12	
   1.87	
  
	
  

Notes:	
  Baseline	
  corresponds	
  to	
  Ford	
  Focus	
  row	
  from	
  Table	
  2a.	
  	
  “Carbon	
  cost”	
  uses	
  a	
  social	
  cost	
  of	
  
carbon	
  of	
  $51	
  or	
  $31.	
  	
  “No	
  temperature	
  adjustment”	
  assumes	
  electric	
  vehicle	
  range	
  is	
  independent	
  of	
  
temperature.	
  	
  “Flat	
  charging	
  profile”	
  assumes	
  electric	
  vehicle	
  charging	
  occurs	
  equally	
  in	
  all	
  hours.	
  	
  
“Average	
  MPG”	
  uses	
  the	
  average	
  MPG	
  for	
  the	
  gasoline	
  vehicle	
  regardless	
  of	
  where	
  it	
  is	
  driven.	
  	
  “Double	
  
gasoline	
  emissions	
  rates”	
  doubles	
  the	
  gasoline	
  vehicle	
  emissions	
  rates	
  for	
  local	
  pollutants.“$2	
  Million	
  
VSL”	
  assumes	
  the	
  VSL	
  is	
  $2	
  million	
  instead	
  of	
  the	
  baseline	
  $6	
  million.	
  	
  “PM	
  dose	
  response”	
  assumes	
  a	
  
higher	
  PM2.5	
  adult-­‐mortality	
  dose-­‐response	
  from	
  Roman	
  etal	
  2008.	
  	
  “Future	
  grid	
  &	
  vehicle”	
  assumes	
  all	
  
coal-­‐fired	
  power	
  plants	
  replaced	
  by	
  identically	
  dispatched	
  natural	
  gas	
  plants	
  and	
  a	
  Toyota	
  Prius	
  gasoline	
  
vehicle.	
  	
  “High	
  estimates”	
  assumes	
  95th	
  percentile	
  damages	
  for	
  all	
  local	
  pollutants	
  for	
  all	
  counties.	
  	
  “Low	
  
estimates”	
  assumes	
  5th	
  percentile	
  damages	
  for	
  all	
  local	
  pollutants	
  for	
  all	
  counties.	
  	
  “*”	
  indicates	
  the	
  
“min”	
  and	
  “max”	
  counties	
  are	
  replaced	
  by	
  the	
  5th	
  and	
  95th	
  percentile	
  counties.	
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A Choice over several gasoline and electric vehicles

and proofs of propositions

Proof of propositions

Preliminary calculations. For the moment we drop the i subscript. Let G = πg and E =
(1 − π)e. For a generic policy variable ρ we have

∂W
∂ρ

= µ( 1

exp(Vg/µ) + exp(Ve/µ)
)( 1

µ
exp(Vg/µ)

∂Vg
∂ρ

+ 1

µ
exp(Ve/µ)

∂Ve
∂ρ

)−(δg
∂G

∂ρ
+ δe

∂E

∂ρ
)+∂R

∂ρ
,

which simplifies to

∂W
∂ρ

= ((1 − π)∂Ve
∂ρ

+ π∂Vg
∂ρ

) − (δg
∂G

∂ρ
+ δe

∂E

∂ρ
) + ∂R

∂ρ
. (A-1)

From the definition of π we have

∂π

∂ρ
=

(exp(Vg/µ) + exp(Ve/µ)) exp(Vg/µ) 1
µ
∂Vg
∂ρ − exp(Vg/µ)(exp(Vg/µ) 1

µ
∂Vg
∂ρ + exp(Ve/µ) 1

µ
∂Ve
∂ρ )

(exp(Vg/µ) + exp(Ve/µ))2
.

which simplifies to
∂π

∂ρ
= π(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ

). (A-2)

Using this result we can derive the following

∂G

∂ρ
= g∂π

∂ρ
+ π∂g

∂ρ
= gπ(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ

) + π∂g
∂ρ

(A-3)

and
∂E

∂ρ
= −e∂π

∂ρ
+ (1 − π)∂e

∂ρ
= −eπ(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ

) + (1 − π)∂e
∂ρ
. (A-4)

With these in hand we turn to the proof of the Propositions.

Proof of Proposition 1. Throughout the proof we can drop the subscript i. From the Envelope

Theorem, we have
∂Vg
∂s = 0 and ∂Ve

∂s = 1. The first-order condition for s comes from substituting
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these expressions into (A-1) with ρ = s, setting the resulting expression equal to zero, and

simplifying. This gives

(1 − π) − (δg
∂G

∂s
+ δe

∂E

∂s
) + ∂R

∂s
= 0.

Expected tax revenue is R = −s(1−π). So we have ∂R
∂s = −(1−π)+s∂π∂s . Substituting this into

the first-order condition and simplifying gives

(s∂π
∂s

) − (δg
∂G

∂s
+ δe

∂E

∂s
) = 0. (A-5)

So the optimal s is given by

s =
δg

∂G
∂s + δe ∂E∂s

∂π
∂s

(A-6)

From (A-3) and (A-4), we have

∂G

∂s
= ∂g
∂s
π + g∂π

∂s
= g∂π

∂s
,

and
∂E

∂s
= ∂e
∂s

(1 − π) − e∂π
∂s

= −e∂π
∂s
,

where the second equality in both equations follows from the fact that there are no income

effects, so ∂g
∂s and ∂e

∂s are equal to zero. Substituting these into the first-order condition for s

and simplifying gives

s = (δgg − δee) .

∎
Proof of Proposition 2.

Let W(S) denote the sum of welfare across regions as a function of an arbitrary vector

of subsidies S = (s1, s2, . . . , sn). We have

W(S) = ∑Wi(si) = ∑ni (µ (ln(exp(Vei/µ) + exp(Vgi/µ))) +Ri − (δgiGi + δeiEi)) .

First consider the derivation of the second-best uniform subsidy. Here the central govern-

ment selects the same subsidy s for each location. Except for δgi, δei, and αi, the locations
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are identical, and the government is selecting the same subsidy for each location. Therefore,

the values for ei, gi, Ri and πi will be same across locations. Under these conditions, the

derivative of W(S) with respect to s can be written as

∑αis
∂π

∂s
−∑αi (δgi

∂G

∂s
+ δei

∂E

∂s
) = 0.

It follows that

s
∂π

∂s
− (∂G

∂s
∑αiδgi +

∂E

∂s
∑αiδei) = 0.

Solving for s gives the second-best uniform subsidy s̃

s̃ = 1
∂π
∂s

(∑αiδgi
∂G

∂s
+∑αiδei

∂E

∂s
) . (A-7)

The equation in the Proposition for s̃ now follows from the same manipulations used in the

proof of Proposition 1.

Next we want to determine a second-order Taylor series approximation to W(S) at the

point S̃ = (s̃, s̃, . . . , s̃). First we take the derivatives at an arbitrary point. Because ∂W
∂si

does

not depend on sj, the cross-partial derivative terms will all be equal to zero. We have

∂W
∂si

= αisi
∂πi
∂si

− αi (δgi
∂Gi

∂si
+ δei

∂Ei
∂si

)

From (A-2), (A-3), and (A-4) we have: ∂πi
∂si

= −πi(1−πi)µ , ∂Gi
∂si

= −πi(1−πi)µ gi and ∂Ei
∂si

= πi(1−πi)
µ ei.

Using these we can write the derivative as

∂W
∂si

= αi
πi(1 − πi)

µ
(−si + δgigi − δeiei) .

Now take the second derivative. We have

∂2W
∂s2

i

= −αi
µ2
πi(1−πi)(1−2πi) (−si + δgigi − δeiei)−αi

πi(1 − πi)
µ

= − 1

µ
(1−2πi)

∂W
∂si

−αi
πi(1 − πi)

µ
.
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Evaluating the first and second derivatives at S̃ gives

∂W
∂si

∣
S̃

= αi
µ
π(1 − π)(δgig − δeie − s̃), (A-8)

and
∂2W
∂s2

i

∣
S̃

= − 1

µ
(1 − 2π) ∂W

∂si
∣
S̃

− αi
µ
π(1 − π). (A-9)

We have dropped the subscripts from g, e, and π because prices, income, and the functions

f and h are the same across locations, and, at the point S̃, the subsidy is the same across

locations. In addition, because the subsidy does not effect the number of miles driven, it

follows from Proposition 1, that s∗i = (δgig − δeie). Thus

∂W
∂si

∣
S̃

= αi
µ
π(1 − π)(s∗i − s̃). (A-10)

Because the cross-partial derivatives are equal to zero, the second-order Taylor series

expansion of W at the point S̃ can be written as

W(S) −W(S̃) ≈ ∑
∂W
∂si

∣
S̃

(si − s̃) +
1

2
∑

∂2W
∂s2

i

∣
S̃

(si − s̃)2.

We use this expansion to evaluate W(S∗) −W(S̃). From (A-9) and (A-10) we have

W(S∗) −W(S̃) ≈ 1

µ
π(1 − π)∑αi(s∗i − s̃)2+

1

2
(− 1

µ2
π(1 − π)(1 − 2π)∑αi(s∗i − s̃)3 − 1

µ
π(1 − π)∑αi(s∗i − s̃)2) .

The formula for the second-order approximation follows by combining the quadratic (s∗i − s̃)
terms. ∎

Choice over several gasoline and electric vehicles

Here we expand the model to allow for a richer consumer choice set. For simplicity we

assume there is a single location. There are me electric vehicles and mg gasoline vehicles.

Gasoline vehicles are indexed by the subscript i and electric vehicles are indexed by the
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subscript j. Each vehicle has a different purchase price and price of a mile, and we allow

for the possibility of vehicle-specific taxes on miles and purchases. The indirect utility of

purchasing the i’th gasoline vehicle is given by

Vgi = max
x,gi

x + fi(gi) s.t. x + (pgi + tgi)gi = T − pΨi.

The indirect utility of purchasing the j’th electric vehicle is given by

Vej = max
x,ej

x + hj(gj) s.t. x + (pej + tej)ej = T − (pΩj − sj).

The conditional utility, given that a consumer elects gasoline vehicle i, is given by

Ugi = Vgi + εgi.

The conditional utility, given that a consumer elects the electric vehicle j

Uej = Vej + εej

The consumer selects the vehicle that obtains the greatest conditional utility. Following the

same distributional assumptions as in the main text, the probability of selecting the gasoline

vehicle i is

πi =
exp(Vgi/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.

The probability of selecting the electric vehicle j is

π̃j =
exp(Vej/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.

And of course ∑i πi +∑j π̃j = 1. The welfare associated with the purchase of a new vehicle is

given by

W = µ ln(∑
i

exp(Vgi/µ) +∑
j

exp(Vej/µ)) +R − (∑
i

δgiπigi +∑
j

δejπ̃jej) ,
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where δgi is the damage per mile from gasoline vehicle i and δei is the damage per mile from

electric vehicle j. It is useful to define Gi = πigi and Ej = π̃jej.

Differentiated subsidies on purchase of electric vehicle

Here we consider a policy in which the government selects vehicle-specific tax on the purchase

of electric vehicles. Let sj be the subsidy on the electric vehicle j. Government revenue is

R = −∑ π̃jsj. Now consider a given electric vehicle, say vehicle k. The optimal subsidy on

the purchase of this vehicle, sk, solves the first-order condition

∂W
∂sk

= ∑
i

πi
∂Vgi
∂sk

+∑
j

π̃j
∂Vej
∂sk

+ ∂R

∂sk
−∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

From the Envelope Theorem, we have

∂Vgi
∂sk

= 0

and, for j ≠ k,
∂Vej
∂s

= 0.

For j = k we have
∂Vej
∂sk

= 1.

Substituting these expressions into the first-order condition gives

∂W
∂sk

= ∂R

∂sk
+ π̃k −∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

Now
∂R

∂sk
= −π̃k −∑

j

∂π̃j
∂sk

sj.

Substituting this into the first-order condition gives

∂W
∂sk

= −∑
j

∂π̃j
∂sk

sj −∑
i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.
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Because there are no income effects,

∂Gi

∂sk
= gi

∂πi
∂sk

and
∂Ej
∂sk

= ej
∂π̃j
∂sk

.

Substituting these derivatives into the first-order condition gives

∂W
∂sk

= −∑
j

∂π̃j
∂sk

sj −∑
i

δgigi
∂πi
∂sk

−∑
j

δejej
∂π̃j
∂sk

= 0. (A-11)

We have one of these equations for each k. So we must solve the system of me equations for

the me unknowns sj. Since we do not obtain an explicit solution for the optimal taxes on

purchase, we cannot derive analytical welfare approximations to the gains from differentiation

analogous to Proposition 2. We can, of course, obtain exact welfare measures by numerical

methods.

Uniform subsidy on the purchase of an electric vehicle

Now suppose that the government places a uniform subsidy s on the purchase of any electric

vehicle. Expected government revenue is given by R = −∑j π̃js. The optimal s can be found

as a special case of (A-11). Let sk = s for every k. Then (A-11) becomes

∂W
∂s

= −s∑
j

∂π̃j
∂s

−∑
i

δgigi
∂πi
∂s

−∑
j

δejej
∂π̃j
∂s

= 0.

Solving for s gives

s = −∑i
δgigi

∂πi
∂s +∑j δejej

∂π̃j
∂s

∑j
∂π̃j
∂s

Now since ∑i πi +∑j π̃j = 1 it follows that

∑
i

∂πi
∂s

+∑
j

∂π̃j
∂s

= 0.
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Using this gives

s = ∑i
δgigi

∂πi
∂s

∑i ∂πi∂s

− ∑j
δejej

∂π̃j
∂s

∑j
∂π̃j
∂s

.

In the special case in which gi = g and ej = e, we have

s = g∑i
δgi

∂πi
∂s

∑i ∂πi∂s

− e∑j
δej

∂π̃j
∂s

∑j
∂π̃j
∂s

.

The subsidy is a function of the weighted sum of marginal damages from each vehicle in the

choice set, where the weights are equal to the partial derivative of the choice probabilities with

respect to s. This generalizes the result in Proposition 1 in the main text. The informational

requirements of the two results are different, however. To evaluate the optimal subsidy in

Proposition 1, we need only make an assessment of the damage parameters (the δ′s) and the

lifetime miles (e and g). To evaluate the optimal subsidy when there is an expanded choice

set, we need, in addition, the partial derivatives of the adoption probabilities, which requires

a fully calibrated model.

We can also express this result in terms of cross-price elasticities. To see this, consider a

special case in which there are two gasoline vehicles (with probability of adoption π1 and π2)

and a single electric vehicle (with probability of adoption π̃.) The equation for the optimal

subsidy is

s = g (
δg1

∂π1

∂s + δg2
∂π2

∂s
∂π1

∂s +
∂π2

∂s

) − eδe.

From the definition of πi it follows that

∂π1

∂s
= −π1π̃

µ
and

∂π2

∂s
= −π2π̃

µ
.

Substituting into the expression for s gives

s = g (δg1π1 + δg2π2

π1 + π2

) − eδe. (A-12)

Now consider the cross-price elasticities for the electric vehicle (i.e., the effect of a change

in the price of gasoline vehicle i on the demand for the electric vehicle). For discrete choice
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goods, price elasticities are defined with respect to the choice probability. So the cross-price

elasticity is

εi ≡
∂π̃

∂pΨi

pΨi

π̃
= π̃πi

µ

pΨi

π̃
= πi
µ
pΨi.

It follows that

s = g (
δg1

ε1
pΨ1

+ δg2 ε2
pΨ2

ε1
pΨ1

+ ε2
pΨ2

) − eδe.

We can use (A-12) to describe the likely effect of including an additional gasoline vehicle

in the consumers choice set on the welfare gains from differentiated regulation. Consider a

baseline two-vehicle case in which the electric vehicle pollutes more than gasoline cars, so that

the optimal uniform policy is a tax on electric vehicle purchase. Starting at this baseline, we

consider an expanded choice set with an additional gasoline vehicle. Suppose initially that

the original gasoline vehicle and the additional gasoline vehicle are exactly the same (they

have the same purchase price, price for miles, and external costs). Then, of course, adding

the additional gasoline vehicle to the choice set will not have any welfare consequences. Now

suppose that in each region, the external costs from the additional gasoline vehicle are D

units less than the external costs from the original gasoline vehicle. Thus the additional

vehicle lowers the mean of the distribution of environmental benefits, but does not change

the variance or skewness. We now make two observations. First, because the purchase price

and price for miles are still the same we have π1 = π2. Second, the additional vehicle leads to

lower average environmental damages from gasoline vehicles in each region. Combining these

two observations with (A-12) implies that the tax on electric vehicle purchases increases in

each region. Because the gasoline vehicles are the same from the point of view of the

consumer, Proposition 2 still applies. Thus the additional gasoline vehicle lowers the welfare

gain from differentiation.61 This result is reversed if the additional vehicle raises the mean

of the distribution of environmental benefits.

61Including the additional vehicle increases the taxes on electric vehicle purchases, which increases π,
which in turn decreases both π(1 − π) and π(1 − π)(2π − 1). Because the variance and skewness have not
changed, the second order approximation to the welfare gain from differentiation decreases.
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B Welfare gains from differentiation: taxation of gaso-

line and electric miles

Here there are taxes on both gasoline and electric miles. We know that location specific

Pigovian taxes are first-best, but it is useful to derive this result in our model before turning

to other welfare results. For the moment we can drop the location subscript i.

From the Envelope Theorem, we have (under our normalization of the price of the com-

posite good, the marginal utility of income is equal to one)

∂Vg
∂tg

= −g,

and
∂Ve
∂tg

= 0.

The first-order condition for tg comes from substituting these expressions into (A-1) with

ρ = tg, setting the resulting expression equal to zero, and simplifying. This gives

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) = 0. (A-13)

We have taxes on both gasoline and electric miles. Expected revenue is therefore R =
tgπg + te(1 − π)e. Taking the derivative of revenue with respect to tg gives

∂R

∂tg
= G + tg

∂G

∂tg
+ te

∂E

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
+ te

∂E

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.

Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
+ (te − δe)

∂E

∂tg
= 0.
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Similar calculations with respect to te gives

(tg − δg)
∂G

∂te
+ (te − δe)

∂E

∂te
= 0.

Now, returning the location subscripts, it is clear that the optimal location-specific taxes are

the Pigovian taxes t∗gi = δgi and t∗ei = δei.
Next follow the steps in the proof of Proposition 2, but this time using taxes on miles

rather than a subsidy on the purchase of the electric vehicle. Let W(T ) denote the weighted

average of per capita welfare across locations as a function of the vector of taxes

T = (tg1, tg2, . . . , tgm, te1, te2, . . . , tem).

We have

W(T ) = ∑αiWi(tgi, tei) = µ∑αi (ln(exp(Vei/µ) + exp(Vgi/µ))) +Ri − (δgiGi − δeiEi)).

First consider the second-best uniform taxes on gasoline and electric miles. Here the

central government selects the same taxes tg and te in each location. This implies the values

for ei, gi, Ri, and πi will be the same across locations. Under these conditions, the derivatives

of W(T ) with respect to tg and te be written as

∑αi ((tg − δgi)
∂G

∂tg
+ (te − δei)

∂E

∂tg
) = 0.

∑αi ((tg − δgi)
∂G

∂te
+ (te − δei)

∂E

∂te
) = 0.

The solution to these equations is t̃g = ∑αiδgi ≡ δ̄g and t̃e = ∑αiδei ≡ δ̄e. In other words, the

second-best uniform tax on gasoline miles is equal to the weighted average of the marginal

damages from gasoline emissions across locations.

Next we want to determine a first-order Taylor series approximation to W(T ) at the
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point T̃ = (t̃g, t̃g, . . . , t̃g, t̃e, t̃e, . . . , t̃e). At an arbitrary point, we have

∂W
∂tgi

= αi(tgi − δgi)
∂Gi

∂tgi
+ αi(tei − δei)

∂Ei
∂tgi

and
∂W
∂tei

= αi(tgi − δgi)
∂Gi

∂tei
+ αi(tei − δei)

∂Ei
∂tei

.

At T̃ , taxes equal in each location, so the gasoline miles and electric miles will be the same

each each location. Thus we can drop the subscripts from g, e,G,E and π. From (A-3) we

have
∂G

∂tg
= gπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg

) + π ∂g
∂tg

= −g2π(1 − π)
µ

+ π ∂g
∂tg

.

∂E

∂tg
= −eπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg

) + (1 − π) ∂e
∂tg

= geπ(1 − π)
µ

.

∂G

∂te
= gπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te

) + π ∂g
∂te

= geπ(1 − π)
µ

.

∂E

∂te
= −eπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te

) + (1 − π) ∂e
∂te

= −e2π(1 − π)
µ

+ (1 − π) ∂e
∂te

.

This gives

∂W
∂tgi

∣
T̃

= αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg

) + αi(δ̄e − δei) (ge
π(1 − π)

µ
)

and
∂W
∂tei

∣
T̃

= αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)

The first-order Taylor series expansion of W at the point T̃ can be written as

W(T ) −W(T̃ ) ≈ ∑
∂W
∂tgi

∣
T̃

(tgi − t̃g) +∑
∂W
∂tei

∣
T̃

(tei − t̃e).

Using the expressions above gives

W(T ∗)−W(T̃ ) ≈ ∑(αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg

) + αi(δ̄e − δei) (ge
π(1 − π)

µ
)) (t∗gi−t̃g)+
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∑(αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)) (t∗ei − t̃e).

Which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(t∗gi − t̃g)2 − 2ge(t∗gi − t̃g)(t∗ei − t̃e) + e2(t∗ei − t̃e)2))−

π
∂g

∂tg
∑αi(t∗gi − t̃g)2 − (1 − π) ∂e

∂te
∑αi(t∗ei − t̃e)2.

Substituting in the values t∗gi = δgi, t∗ei = δei, t̃g = δ̄g and t̃e = δ̄e gives

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(δgi − δ̄g)2 − 2ge(δgi − δ̄g)(δei − δ̄e) + e2(δei − δ̄e)2))−

π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π) ∂e

∂te
∑αi(δei − δ̄e)2,

which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g(δgi − δ̄g) − e(δei − δ̄e))
2)−

π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π) ∂e

∂te
∑αi(δei − δ̄e)2.

It is interesting to compare this formula to the corresponding one for purchase subsidies.

Using the fact that s∗i = (δgig − δeie) and s̃ = (δ̄gg − δ̄ee) in conjunction with the proof of

Proposition 2, we can write the first-order approximation formula for the welfare gain of

differentiated purchase subsidies as

W(S∗) −W(S̃) ≈= π(1 − π)
µ

(∑αi(e(δei − δ̄e) − g(δgi − δ̄g))2)

The first term in the formula for W(T ∗) − W(T̃ ) has exactly the same structure as the

formula for W(S∗) − W(S̃), but the values for π, e, and g will be different across the two

formulas. The formula for W(T ∗) −W(T̃ ) also has two extra terms that correspond to the

price effects of the taxes on the purchase of gasoline and electric miles. Because these price
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effects are negative, both of the extra terms increase the benefit of differentiated regulation.

In the special case in which the population in each location is the same and e = g, first term

in the formula for W(T ∗) −W(T̃ ) is proportional to the variance of the difference between

the list of numbers δgi and δei, the second term is proportional to the variance the list of

numbers δgi, and the third term is proportional to the variance of the list of numbers δei.

C Continuous Choice Model

Consider an alternative model of vehicle choice and consumption of miles. Here consumers

rent vehicles on a per mile basis from a competitive leasing market. We use the same notation

for variables that also appear in the main text, and introduce new variables as needed.

Consumers obtain utility from a composite consumption good x (with price normalized

to one) and from miles driven over the course of a year, either gasoline miles g or electric

miles e. The rental price of gasoline miles is rg and the rental price of electric miles is re. A

consumer’s indirect utility function is given by

V = max
x,g,e

u(g, e) + x such that x + ree + rgg = I,

where I is income and u(g, e) is a function that delineates the utility of consuming gas and

electric miles.

Firms in the leasing market buy vehicles from producers and rent them to consumers.

Let pψ be the price of a gasoline vehicle, and let pg be the price of a gasoline mile. To break

even, the leasing firm must charge rental price

rg =
pψ
`
+ pg,

where ` is the number of miles in the lifetime of the vehicle. Likewise, for electric cars

re =
pΩ − s
`

+ pe,

where pΩ is the price of a electric vehicle, pe is the price of an electric mile, and s is the
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electric vehicle purchase subsidy. In equilibrium, leasing firms buy enough vehicles of each

type in a given year to satisfy the total demand for miles from consumers. This implies the

number of electric car purchases and gasoline car purchases (normalized per consumer) are

given by
e

`
and

g

`
.

Consumers create negative environmental externalities by driving, but ignore the dam-

ages from these externalities when making choices about the number of miles. Because the

damages from these pollutants may be global or local, we introduce multiple locations into

the model.

Uniform vs. differentiated regulation

Let m denote the number of locations and let αi denote the proportion of the total population

of consumers that reside in location i. Let δgi denote the marginal full damages (in dollars per

mile) from driving a gasoline vehicle in location i, and δei denote the marginal full damages

(in dollars per mile) from driving an electric vehicle in location i.

First we study differentiated regulation. Here there are m local governments that select

location-specific purchase subsidies. Let Ri denote the per capita government revenue gen-

erated by the purchase of vehicles by the leasing firms in location i. Local government i

selects the purchase subsidy si to maximize the welfare Wi associated with driving vehicles

within the location, defined as the sum of utility and revenue less pollution damage:

Wi = V +Ri − (δgigi + δeiei).

Optimizing the welfare function gives the the following Proposition.

Proposition 3. The second-best differentiated subsidy on the purchase of the electric vehicle

in location i is given by s∗i where

s∗i = `
⎛
⎝
−δgi

∂gi
∂si
∂ei
∂si

− δei
⎞
⎠
. (A-14)
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If we assume that the subsidy does not effect the total number of miles driven, it follows that

s∗i = ` (δgi − δei) .

Proof. Revenue is equal to the subsidy multiplied by the number of electric car sales.

Ri = −si
ei
`
.

So welfare is

Wi = (Vi − si
ei
`
− δgigi − δeiei.)

The first-order condition is

∂Vi
∂si

− ei
`
− si
`

∂ei
∂si

− δgi
∂gi
∂si

− δei
∂ei
∂si

= 0.

We have
∂Vi
∂si

= ∂Vi
∂re

∂re
∂si

= (−ei)(−
1

`
),

where the second equality comes from Roy’s identity (and the fact that the marginal utility

of income is equal to one). Substituting into the first-order condition gives

−si
`

∂ei
∂si

− δgi
∂gi
∂si

− δei
∂ei
∂si

= 0.

Solving for si gives (A-14).

If the subsidy does not effect the total number of miles driven, then ei + gi is constant

with respect to s. It follows that
∂ei
∂s

+ ∂gi
∂s

= 0. (A-15)

Using this in (A-14) completes the proof.

The second result in Proposition 3 is the same as the result in Proposition 1, provided

that the vehicle lifetime miles are the same. In the discrete choice model, the subsidy does

not effect either the number of electric miles driven or the number of gasoline miles driven.

In the continuous choice model, we can make the weaker assumption that the subsidy does
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not effect the total number of miles driven and still obtain the same result for the second-best

subsidy.

Next we study uniform regulation. Here a central government selects a uniform subsidy

that applies to all m locations. The government’s objective is to maximize ∑αiWi, which

is the weighted sum of welfare across locations. The next proposition delineates the second-

best uniform subsidy. It also describes an approximation formula for the welfare gain in

moving from uniform regulation to differentiated regulation.

Proposition 4. Assume that the subsidy does not effect the total number of miles driven.

Also assume that prices, income, and the function u are the same across locations. The

second-best uniform subsidy on the purchase of an electric vehicle is given by s̃, where

s̃ = ` ((∑αiδgi) − (∑αiδei)) .

Furthermore, let W(S∗) be the weighted average of welfare from using the second-best differ-

entiated subsidies s∗i in each location and let W(S̃) be the weighted average of welfare from

using the second-best uniform subsidy s̃ in each location. To a second-order approximation,

we have

W(S∗) −W(S̃) ≈ 1

2

∂e

∂s
∣
s̃

1

`
∑αi(s∗i − s̃)2 + 1

2

∂2e

∂s2
∣
s̃

1

`
∑αi(s∗i − s̃)3.

Proof. LetW(S) denote the sum of welfare across regions as a function of an arbitrary vector

of subsidies S = (s1, s2, . . . , sn). We have

W(S) = ∑αi(Vi − si
ei
`
− δgigi − δeiei.)

First consider the derivation of the second-best uniform subsidy. Here the central govern-

ment selects the same subsidy s for each location. Except for δgi, δei, and ni, the locations are

identical, and the government is selecting the same subsidy for each location. Therefore, the

values for ei, gi, and Ri will be same across locations. Under these conditions, the derivative

of W(S) with respect to s can be written as

∑αi(−
s

`

∂e

∂s
− δgi

∂g

∂s
− δei

∂e

∂s
) = 0.
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Solving for s gives

s = `(−(∑αiδgi)
∂g
∂s
∂e
∂s

− (∑αiδei)) .

Applying (A-15) gives the equation in the proposition.

Next we want to determine a second-order Taylor series approximation to W(S) at the

point S̃ = (s̃, s̃, . . . , s̃). First we take the derivatives at an arbitrary point. Because ∂W
∂si

does

not depend on sj, the cross-partial derivative terms will all be equal to zero. We have

∂W
∂si

= αi (−
si
`

∂ei
∂si

− δgi
∂gi
∂si

− δei
∂ei
∂si

) = αi
∂ei
∂si

⎛
⎝
−si
`
− δgi

∂gi
∂si
∂ei
∂si

− δei
⎞
⎠

= αi
∂ei
∂si

(−si
`
+ δgi − δei) ,

where the third equality follows from (A-15).

Now take the second derivative. We have

∂2W
∂s2

i

= αi (−
si
`

∂2ei
∂s2

i

− 1

`

∂ei
∂si

+ δgi
∂2ei
∂s2

i

− δei
∂2ei
∂s2

i

) = −αi
`

∂ei
∂si

+ αi
∂2ei
∂s2

i

(−si
`
+ δgi − δei) ,

where we have used the derivative of (A-15) with respect to s in simplifying.

Evaluating the first and second derivatives at S̃ gives

∂W
∂si

∣
S̃

= αi
∂e

∂s
∣
s̃

(− s̃
`
+ δgi − δei) =

αi
`

∂e

∂s
∣
s̃

(−s̃ + s∗i ) , (A-16)

and

∂2W
∂s2

i

∣
S̃

= −αi
`

∂e

∂s
∣
s̃

+ αi
∂2e

∂s2
∣
s̃

(− s̃
`
+ δgi − δei) = −

αi
`

∂e

∂s
∣
s̃

+ αi
`

∂2e

∂s2
∣
s̃

(−s̃ + s∗i ) , (A-17)

where the second equality in both cases follows from Proposition 3. We have dropped the

subscripts from g and e because prices, income, and the function u are the same across

locations, and, at the point S̃, the subsidy is the same across locations.

Because the cross-partial derivatives are equal to zero, the second-order Taylor series
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expansion of W at the point S̃ can be written as

W(S) −W(S̃) ≈ ∑
∂W
∂si

∣
S̃

(si − s̃) +
1

2
∑

∂2W
∂s2

i

∣
S̃

(si − s̃)2.

We use this expansion to evaluate W(S∗) −W(S̃). From (A-16) and (A-17) we have

W(S∗) −W(S̃) ≈ ∂e

∂s
∣
s̃

1

`
∑αi(s∗i − s̃)2 − 1

2

∂e

∂s
∣
s̃

1

`
∑αi(s∗i − s̃)2 + 1

2

∂2e

∂s2
∣
s̃

1

`
∑αi(s∗i − s̃)3.

It follows that

W(S∗) −W(S̃) ≈ 1

2

∂e

∂s
∣
s̃

1

`
∑αi(s∗i − s̃)2 + 1

2

∂2e

∂s2
∣
s̃

1

`
∑αi(s∗i − s̃)3.

Proposition 4 is most easily interpreted in the special case in which the population is the

same in each location (αi = 1
n). Here the second-best uniform subsidy s̃ is equal to average

environmental benefits multiplied by the number of miles driven in a vehicle’s life. And the

approximate welfare gain from differentiation is a function of the second and third moments

of the distribution of the environmental benefits. Once again we see that under the weaker

assumption that the subsidy does not effect the total miles driven, we get similar results to

the discrete choice model in the main text.

D Welfare Gains from Differentiation: Additional De-

tails and Comparison with Mendelsohn (1986)

First consider the discrete choice model in the main text, under the assumptions of Propo-

sition 2. Marginal welfare in region i is given by

∂Wi

∂si
= π(1 − π)

µ
(−si + g(δgi − δei)). (A-18)
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Next considere the continuous choice model in Supplementary Appendix C, under the as-

sumptions of Proposition 4. Marginal welfare in region i is given by

∂Wi

∂si
= ∂e
∂s

(−si
`
+ δgi − δei) . (A-19)

Finally, consider the model in Mendelsohn (1986). Here the regulator selects an emission

standard qi and the environmental variable is denoted by xi. Marginal welfare in region i is

given by
∂Wi

∂qi
= a + xi − bqi. (A-20)

These equations all have a similar feature. When set equal to zero in a first-order condi-

tion, one can solve for the policy variable as a linear function of the environmental variable.

This ensures that the welfare benefits of differentiation can be written as a function of the

moments of the distribution of the environmental variable. But these equations differ with

respect to whether the overall equation is linear in the policy variable, and this difference

determines the whether or not the second moment is sufficient to describe the benefits of

differentiation.

In Mendelsohn’s model (A-20), marginal welfare is linear in xi. And the welfare gain from

differentiation is a function of only the second moment of the distribution of the environmen-

tal variable. In contrast, in the discrete choice version of our model (A-18), marginal welfare

is non-linear, because π(1 − π) is a non-linear function si. And, as described by Propo-

sition 2, the welfare gain from differentiation is a function of both the second and third

moments of the distribution of the environmental variable. In the continuous version of our

model (A-19), marginal welfare may be linear or non-linear, depending on the properties of

the demand function e. If the demand function is linear, then ∂e
∂si

is a constant, and hence

marginal welfare is linear in si. In this case, we get the same result as with Mendelsohn:

the welfare gain from differentiation is a function of only the second moment. (This follows

from Proposition 4, because ∂2e
∂s2 will be equal to zero.) If the demand function is non-linear,

then ∂e
∂si

is not constant, and hence marginal welfare in nonlinear in si. In this case, we get

the same result as with our discrete choice version: the welfare gain from differentiation is a

function of both the second and third moment.
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A graphical illustration of these ideas for a three region example is given in Figure A.

Here we use Mendelsohn’s notation with units normalized such that the optimal differentiated

policy variable is equal to the environmental variable (thus, for example, in (A-20), a = b = 1).

Assume for the moment that marginal welfare is a linear function of the policy variable

qi. We have superimposed all the marginal welfare functions for all three regions on the

same coordinate axis. In the first case, shown on the left-hand-side, the environmental

variable x takes on the values (1,4,4) in the three regions. Notice that regions two and

three have the same marginal welfare. Under differentiated regulation, the optimal values

are (q∗1 , q∗2 , q∗3) = (1,4,4). Under uniform regulation, the optimal value for q̃ is three, which

is simply the average of the xi’s. The welfare loss from uniform regulation is equal to the

area A plus two times the area B. In the second case, shown on the right-hand-side, the

environmental variable takes on the values (2,2,5) and region one and two now have the

same marginal welfare. Notice that the two cases have the same mean and variance for the

distribution of x, but the third moment is different. The welfare loss from uniform regulation

in the second case is equal to the area A plus two times the area B. Because these triangles

have the same area in both cases, the welfare loss from uniform regulation is the same in both

cases. Thus the third moment does not effect the welfare loss, provided that marginal welfare

is linear in the policy variable. If we relax this assumption, however, then the welfare loss

will no longer be the same across the two cases, and hence will depend on the third moment.

As a final point, our welfare approximation was defined relative to the reference point

of uniform regulation. Suppose instead we define the reference point to be the second-best

differentiated regulation. In this case we are measuring the welfare loss of using uniform

regulation rather than differentiated regulation.62 Modifying (A-8) to evaluate the derivative

at S∗ rather than S̃ gives

∂W
∂si

∣
S∗

= αi
µ
πi(1 − πi)(−s∗i + δgig − δeie) =

αi
µ
πi(1 − πi)(−s∗i + s∗i ) = 0. (A-21)

As we would expect, the first derivative of the welfare function is equal to zero at the second-

62In the main text we measured the welfare gain of using differentiated regulation rather than uniform
regulation. Because we are using approximation formulas, these two measures will not be exactly the same.
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Figure A: Effect of Third Moment on Welfare Gain From Differentiation: Linear Case
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best differentiated regulation. Similar modifications of (A-9) gives

∂2W
∂s2

i

∣
S∗

= − 1

µ
(1 − 2πi)

∂W
∂si

∣
s∗i

− αi
µ
πi(1 − πi) = −

αi
µ
πi(1 − πi), (A-22)

because the first derivative is zero. Now we want to evaluate W(S̃) −W(S∗). Because the

first derivative is zero at S∗, we have

W(S̃) −W(S∗) ≈ − 1

2µ
∑πi(1 − πi)αi(s∗i − s̃)2.

This expression is quadratic in s∗ − s̃. But also notice that we can’t factor out the π′s,

because they are defined at the points s∗i , and hence are not all the same. So there is not a

simple interpretation in terms of the distribution of the environmental benefits of an electric

vehicle. For this reason, we use the other welfare expression (with the reference point of

uniform regulation) in the main text.

E Substitute gasoline vehicles and their emissions

In the main text, we assigned an substitute gasoline vehicle to each electric vehicle. These

substitute gasoline vehicles represent the forgone vehicle when a consumer purchases an

electric vehicle. Emissions data for the substitute gasoline vehicles are given in Table A.

To test to see if our choices were reasonable, we obtained data from the market research

company MaritzCX. They conduct a new vehicle customer survey in which participants are

asked: “When shopping for your new vehicle, did you consider any OTHER cars or trucks?”

(emphasis in original). If the participants responded yes, then they were asked to state the

“model most seriously considered”. We obtained data on responses from participants who

purchased one of the electric vehicles listed in Table 2 during the years 2013-2015.

The responses are summarized in Tables B to Tables D for the Ford Focus, Nissan

Leaf and Tesla S. The most notable thing about the responses is that the vast majority of

respondents either report most seriously considering another EV or not seriously considering

another vehicle. Thus the survey provides information on the substitute gasoline vehicle for

only a small share of respondents.
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Table A: Emissions data for 2014 electric vehicles and substitute gasoline vehicles

Electric Vehicle kWhrs/Mile Substitute MPG NOx VOC PM2.5 SO2

Gasoline Vehicle

Chevy Spark EV 0.283 Chevy Spark 39/31 0.04 0.127 0.017 0.004
Honda Fit EV 0.286 Honda Fit 33/27 0.07 0.147 0.017 0.005
Fiat 500e 0.291 Fiat 500e 40/31 0.07 0.147 0.017 0.004
Nissan Leaf 0.296 Toyota Prius 48/51 0.03 0.112 0.017 0.003
Mitsubishi i-Miev 0.300 Chevy Spark 39/31 0.04 0.127 0.017 0.004
Smart fortwo electric 0.315 Smart fortwo 38/34 0.07 0.147 0.017 0.004
Ford Focus electric 0.321 Ford Focus 36/26 0.03 0.112 0.017 0.005
Tesla Model S (60 kWhr) 0.350 BMW 740i 29/19 0.07 0.147 0.017 0.007
Tesla Model S (85 kWhr) 0.380 BMW 750i 25/17 0.07 0.147 0.017 0.008
Toyota Rav4 EV 0.443 Toyota Rav4 31/24 0.07 0.147 0.017 0.006
BYD e6 0.540 Toyota Rav4 31/24 0.07 0.147 0.017 0.006

Notes: NOx, VOC, PM2.5, and SO2 emissions rates for gasoline equivalent cars are in
grams per mile.

For this small share of respondents, the substitute gasoline vehicle is largely consistent

with our choices. For the Ford Focus EV, the most common substitute gasoline vehicle are

the Toyota Prius with 55 respondents; the Audi A3 and Chevrolet Spark with 21 respondents

each; and the Ford Focus (our choice), the Ford Fusion Hybrid, the Volkswagen Golf, and an

unspecified Nissan car with 20 respondents each. For the Nissan Leaf, the Toyota Prius (our

choice) was by far the most common substitute gasoline vehicle with 2166 respondents. For

the Tesla S, the Audi A-Series were the most common substitute gasoline vehicle. But the

Audi A7 and A8 have very similar emission profiles to our choices (the BMW 750 and BMW

740). The results for the other electric vehicles follow a similar pattern. For the Spark EV

and Smart fortwo EV, our choice was one of the most popular substitute gasoline vehicles.

For the Mitsubishi i-MEV and Toyota Rav4 EV, our choice was not one of the most popular

substitute gasoline vehicles, but our choice has a similar emission profile as these vehicles.

Finally, for the Honda Fit EV, Fiat 500 EV, and BYD e6, there were no responses in the

data.

Most of the results in the main paper are based on the comparison of the Ford Focus EV

with the gasoline Ford Focus. Changing the substitute gasoline vehicle to one of the other

gasoline vehicles identified in Table B would affect these results. For example, the Toyota
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Prius is substantially cleaner than the gasoline Ford Focus. Using the Toyota Prius as the

substitute gasoline vehicle would shift the distribution of environmental benefits of the Ford

Focus EV downward. Using the numbers in Table 2a, mean environmental benefits would

decrease from -0.73 to -1.36 cents per mile. Conversely, using the Audi A3 or Volkswagen

Golf (dirtier cars than the gasoline Ford Focus) would shift the distribution of environmental

benefits of the Ford Focus EV upward. Thus our choice of the gasoline Ford Focus as the

substitute vehicle can be viewed as a moderate one given the alternatives.

Table B: Ford Focus EV: Model most seriously considered

Response Frequency Share

Nissan Leaf ∗ 1128 30%
No Other Considered 1108 30%
Chevrolet Volt ∗ 327 9%
Tesla Model S ∗ 116 3%
Fiat 500 Electric ∗ 105 3%
Ford Fusion Plug In Hybrid ∗ 76 2%
Honda Fit EV ∗ 67 2%
Toyota RAV4 EV ∗ 61 2%
Ford C-Max Energi ∗ 57 2%
Toyota Prius 55 1%
Toyota Prius Plug-in ∗ 52 1%
Chevrolet Spark Electric ∗ 47 1%
BMW i3 ∗ 33 1%
Volkswagen e-Golf ∗ 32 1%
Mitsubishi i-MiEV ∗ 25 1%
Audi A3 21 1%
Chevrolet Spark 21 1%
Ford Focus 20 1%
Ford Fusion Hybrid 20 1%
Volkswagen Golf 20 1%
Nissan Car Unspecified 20 1%
Ford Fusion 18 0%
Honda Accord 17 0%
Nissan Unspecified 17 0%
Fiat 500 15 0%
Lincoln MKZ Hybrid 13 0%

Notes: The survey has 3754 responses from Ford Focus EV purchasers. ∗ indicates plug-in
vehicles.

As an additional robustness check, we created “composite” substitute gasoline vehicles

by taking the weighted average of emissions of the top 10 gasoline substitute vehicles for
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Table C: Nissan Leaf EV: Model most seriously considered

Response Frequency Share

No Other Considered 31,081 61%
Chevrolet Volt ∗ 3372 7%
Toyota Prius 2166 4%
Ford Focus Electric ∗ 1889 4%
Toyota Prius Plug-in ∗ 1073 2%
Tesla Model S ∗ 903 2%
Honda Fit EV ∗ 590 1%
BMW i3 ∗ 502 1%
Ford C-Max Energi ∗ 459 1%
Fiat 500 Electric ∗ 448 1%
Kia Soul 344 1%
Mitsubishi i-MiEV ∗ 332 1%
Ford Fusion 301 1%
Honda Accord 263 1%
Nissan Juke 249 0%
Ford Fusion Plug In Hybrid ∗ 241 0%
Lexus CT200h 231 0%
Toyota Prius v 227 0%
Kia Soul EV ∗ 217 0%
Audi A5 201 0%
Chevrolet Spark Electric ∗ 200 0%
Nissan Altima 189 0%
Honda CR-V 182 0%
Toyota RAV4 EV ∗ 181 0%
Honda Accord Hybrid 172 0%
Honda Civic 157 0%
Nissan Rogue 146 0%
Toyota Corolla 136 0%
smart fortwo electric ∗ 136 0%
MINI Cooper Countryman 135 0%

Notes: The survey has 51,002 responses from Nissan Leaf EV purchasers. ∗ indicates plug-in
vehicles.
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Table D: Tesla S EV: Model most seriously considered

Response Frequency Share

No Other Considered 24,109 26%
Audi A7 648 1%
Chevrolet Volt ∗ 592 1%
Nissan Leaf ∗ 480 1%
Audi A8 337 0%
Porsche Panamera 280 0%
Audi S7 262 0%
Mercedes-Benz S550 260 0%
Audi A6 247 0%
Lexus Car Unspecified 235 0%
Misc. Division Car Unspecified 219 0%
Mercedes-Benz Car Unspecified 219 0%
BMW 650 205 0%
Land Rover Range Rover 199 0%
Fisker Karma ∗ 169 0%
Chevrolet Corvette Stingray 163 0%
Porsche Panamera S Hybrid ∗ 163 0%
Porsche 911 138 0%
BMW Car Unspecified 136 0%
BMW 5-Series Unspecified 132 0%
Audi Car Unspecified 125 0%
Lexus LS460 121 0%
Audi RS 7 116 0%
Tesla Car Unspecified ∗ 113 0%
Jaguar F-Type 111 0%
BMW ActiveHybrid 3 102 0%
Infiniti Q50 Hybrid 97 0%
BMW 750 96 0%
Cadillac Car Unspecified 94 0%
Jeep Grand Cherokee 94 0%
Lexus ES300h 91 0%
Land Rover Evoque 90 0%
Cadillac CTS 90 0%
Lincoln Car Unspecified 90 0%
Porsche Car Unspecified 87 0%
Lincoln MKZ Hybrid 86 0%
Toyota Prius 85 0%
BMW Unspecified 78 0%
BMW 6-Series Unspecified 78 0%
Audi S5 78 0%
BMW M5 76 0%
Mercedes-Benz E550 74 0%

Notes: The survey has 92,437 responses from Tesla S EV purchasers. ∗ indicates plug-in vehicles.
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each electric vehicle, where the weights correspond to the response frequencies. Table E

compares the environmental benefits with respect to our original substitute vehicle and the

environmental benefits with respect to the composite substitute vehicle.63 In about half of

the cases the composite substitute vehicle is cleaner than the original substitute vehicle and

in about half the cases it is dirtier.

Table E: Environmental benefits (cents/mile) relative to two substitute gasoline vehicles

Electric Vehicle Environmental Benefits Environmental Benefits
Original Substitute Composite Substitute

Chevy Spark EV -.60 -0.45
Nissan Leaf -1.16 -.92
Mitsubishi i-Miev -0.73 -0.70
Smart fortwo electric -0.87 -0.73
Ford Focus electric -0.73 -1.02
Tesla Model S (85 kWhr) -0.39 -0.54
Toyota Rav4 EV -1.49 -1.93

Notes: Data for original substitute column is from Table 2. Composite substitute is formed
by taking the weighted average of the top 10 substitutes for the relevant electric vehicle.

F EPRI charging profile

The EPRI charging profile is given in Figure B.

63We did not have any data for the Honda Fit EV, Fiat 500 EV, and BYD e6. The data for Tesla was not
broken out between the 60 and 85 kWhr models, so we did the calculation for the 85 kWhr model.
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Figure B: EPRI charging profile

	

Appendix	Figure	1:		EPRI	charging	profile.	

	

	

Source:	“Environmental	Assessment	of	Plug‐In	Hybrid	Electric	Vehicles,	Volume	1:	Nationwide	
Greenhouse	Gas	Emissions”	Electric	Power	Research	Institute,	Inc.	2007.		p.	4‐10.	

	 	

Source: Electric Power Research Institute (2007).

G The effect of temperature on electric vehicle energy

use

Let E68 be the energy usage (in KWhr/mile) at a baseline temperature of 68°F (obtained

from EPA data). In this Appendix, we determine a temperature adjusted energy usage Ẽ.

The range of an electric vehicle R is given by

R = C
E

where C is the battery capacity of the vehicle (in KWhr). We first determined a function

R(T ) that describes the range as a function of temperature and then use this function in

conjunction with weather data to calculate the temperature adjusted energy usage Ẽ for

each county.

There are three recent studies of the effect of temperature on electric vehicle range.

1. Transport Canada. This engineering study considered three different electric vehicles,

three temperatures (68°F, 19.4°F, -4°F), and cabin heat on/off conditions. The origi-

nal data is available at https://www.tc.gc.ca/eng/programs/environment-etv-electric-

passenger-vehicles-eng-2904.htm

2. AAA. This engineering study considered three different electric vehicles, three tem-
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peratures (75°F, 20°F, 95°F). We were unable to obtain the original data, but the

results are summarized on the internet (http://newsroom.aaa.com/2014/03/extreme-

temperatures-affect-electric-vehicle-driving-range-aaa-says)

3. Nissan Leaf Crowdsource. This study summarizes user reported driving ranges at

a variety of temperatures for the Nissan leaf. The results are posted on the internet

(http://www.fleetcarma.com/nissan-leaf-chevrolet-volt-cold-weather-range-loss-electric-

vehicle/)

There is clear evidence in these studies that significant range loss in electric vehicles

occurs both at low and high temperatures.64 We use a Gaussian function to describe this

range loss

R(T ) = R68e
− (T−68)2

y , (A-23)

where R68 is the range at the baseline temperature of 68°F and y is a parameter to be fitted

from the range loss data. The transport Canada study indicates a 20 percent range loss at

19.4°F with the heat off and a 45 percent range loss at 19.4°F with the heat on. We took

the average of these figures and assumed a 33 percent range loss. This gives65

y = −1(19.4 − 68)2

ln(0.67) .

Temperature data was obtained from the CDC website.66 This gave us the average

monthly temperature in each county for the years 1979-2011. In a given month j with

temperature Tj, the energy usage per mile in that month is given by

Ej =
C

R(Tj)
= E68

R68

R(Tj)
.

Let the total miles driven in month j be denoted by xj, the temperature adjusted energy

64Yuksel and Michalek (2015) use the Nissan Leaf data in their analysis of the effect of temperature on
electric vehicle range.

65The assumed range loss is (R(19.4) −R68)/R68 = −0.33 which implies R(19.4)/R68 = 0.67. Using this in

(A-23), we have 0.67 = e−
(19.4−68)2

y , which we can then solve for y.
66http://wonder.cdc.gov/nasa-nldas.html.
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usage is given by the formula

Ẽ = ( 1

∑xj
)

12

∑
j=1
Ejxj = ( 1

∑xj
)

12

∑
j=1

⎛
⎝

E68

e−
(Tj−68)2

y

⎞
⎠
xj.

We evaluate this formula assuming the number of miles driven per day is constant over all

months.

H Procedure for assigning counties to electricity re-

gions

We model nine electricity demand regions for the contiguous US. Most are based on NERC

regions (see http://www.nerc.com for a general description). The Eastern interconnection

has six NERC regions: FRCC, MRO, NPCC, RFC, SERC, and SPP. We modify these

regions by removing those counties that are served by the Midwest Independent Transmission

System (MISO) circa 2012 from the overlapping NERC regions: MRO, RFC, SERC, and

SPP. This new region is then merged with the remaining MRO area. Thus, only the FRCC

and NPCC regions are exact NERC regions. We split the Western interconnection between

California (specifically, the CA-MX NERC subregion) and the rest of the WECC. The Texas

interconnection is simply the coterminous ERCOT.

Given this set of NERC regions, we assign each county to specific region using the

following procedure. The EPA power profiler (http://www.epa.gov/energy/power-profiler,

year 2010 data) provides a mapping from zip code to eGrid subregion. More specifically,

it identifies the primary, secondary, and tertiary eGrid subregion. We only use the pri-

mary subregion, and map this into the appropriate NERC region. From the U.S. Depart-

ment of Housing and Urban Development, we obtained a county to zip code crosswalk

(http://www.huduser.gov/portal/datasets/usps crosswalk.html, first quarter 2010). This

provided all the zip codes in a given county as well as the number of addresses for each

zip code. Combining the EPA power profiler data with the county to zip crosswalk en-

abled us to assign a NERC region to each county. In the cases in which this procedure

assigned more than one NERC region to a given county, we selected the NERC region which
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Figure C: Electricity demand regions
Appendix	Figure	2:		Electricity	demand	regions.	

	

Notes:	Codes	are	1‐SERC;	2‐California;	3‐RFC;	4‐WECC	w/o		CA	or	NPCC;	5‐ERCOT;	6‐MISO	&	MRO;	
7‐FRCC;	and	8‐SPP.	
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corresponded to the largest number of addresses in the county.

Finally, we recode counties as part of MISO as follows. First, we use EIA 860 data on

power plants to determine which utilities serve the ISO. Then the utility IDs are merged

with EIA 861 files that list the counties that each utility serves. If a utility in a given county

serves MISO, that county was included. Next, we included all other counties in the Eastern

Interconnection that are in Iowa, Illinois, Indiana, Michigan, North Dakota, or Wisconsin.

Finally we excluded all utilities in Ohio as well as the Commonwealth Edison Co. and

Indiana Michigan Power Co. territories.

The overall result is shown in Figure C

I Methods details

Data sources for emissions of gasoline vehicles

The emissions of SO2 and CO2 follow directly from the sulfur or carbon content of the fuels.

Since emissions per gallon of gasoline does not vary across vehicles, emissions per mile can
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be simply calculated by the efficiency of the vehicle.67 For emissions of NOx, VOCs and

PM2.5, we use the Tier 2 standards for NOx, VOCs (NMOG) and PM. We augment the

VOC emissions standard with GREET’s estimate of evaporative emissions of VOCs and

augment the PM emissions standard with GREET’s estimate of PM2.5 emissions from tires

and brake wear. Electric vehicles are likely to emit far less PM2.5 from brake wear because

they employ regenerative braking. We had no way of separating emissions into tires and

brake wear separately, so we elected to ignore both of these emissions from electric vehicles.

This gives a small downward bias to emissions of electric vehicles.

Data sources for the electricity demand regressions

The Environmental Protection Agency (EPA) provides data from its Continuous Emissions

Monitoring System (CEMS) on hourly emissions of CO2, SO2, and NOx for almost all

fossil-fuel fired power plants. (Fossil fuels are coal, oil, and natural gas. We aggregate

data from generating units to the power-plant level. Some older smaller generating units

are not monitored by the CEMS data.) CEMS does not monitor emissions of PM2.5 but

does collect electricity (gross) generation. We match emissions data from the 2011 NEI to

annual gross generation reported on the DOE form 923, by plant, to estimate an average

annual average emissions rate expressed as tons of PM2.5/kWh. Power plant emissions of

VOCs are negligible. Based on the NEI for 2008, power plants accounted for about 0.25%

of VOC emissions, but 75% of SO2 emissions and 20% of NOx emissions. In contrast, the

transportation sector accounted for about 40% of VOC emissions.

The hourly electricity load data are from the Federal Energy Regulatory Commission’s

(FERC) Form 714. Weekends are excluded to focus on commuting days. See Graff Zivin et

al (2014) for more details on the CEMS and FERC data.

67The carbon content of gasoline is 0.009 mTCO2 per gallon and of diesel fuel is 0.010 mTCO2 per gallon.
For sulfur content we follow the Tier 2 standards of 30 parts per million in gasoline (0.006 grams/gallon)
and 11 parts per million diesel fuel (0.002 grams/gallon).
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Details of the AP2 model

AP2 is a standard integrated assessment model in that it links emissions to damages.68

The model first uses an air quality module to map the emissions by sources into ambient

concentrations pollutants at receptor locations. Next, concentrations are used to estimate

exposures using detailed population and yield data for each receptor county in the lower-48

states. Exposures are then converted to physical effects through the application of peer-

reviewed dose-response functions. Finally, an economic valuation module maps the ambient

concentrations of pollutants into monetary damages. AP2 also employs an algorithm to

determine the marginal damages associated with emissions of any given source.

The inputs to the air quality module are the emissions of ammonia (NH3), fine particulate

matter (PM2.5), sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds

(VOC)—from all of the sources in the contiguous U.S. that report emissions to the USEPA.69

The outputs from the air quality module are predicted ambient concentrations of the three

pollutants—SO2, O3, and PM2.5— at each of the 3,110 counties in the contiguous U.S.

The relationship between inputs and outputs captures the complex chemical and physical

processes that operate on the pollutants in the atmosphere. For example, emissions of

ammonia interact with emissions of NOx, and SO2 to form concentrations of ammonium

nitrate and ammonium sulfate, which are two significant (in terms of mass) constituents of

PM2.5. And emissions of NOx and VOCs are linked to the formation of ground-level ozone,

O3. The predicted ambient concentrations from the air quality module give good agreement

with the actual monitor readings at receptor locations (Muller 2011).

The inputs to the economic valuation module are the ambient concentrations of SO2, O3,

and PM2.5 and the outputs are the monetary damages associated with the physical effects of

exposure to these concentrations. The majority of the damages are associated with human

68See Muller, 2011; 2012; 2014. The AP2 model is an updated version of the APEEP model (Muller and
Mendelsohn 2007; 2009; 2012; National Academy of Sciences 2010; Muller et al 2011; Henry et al 2011).

69There are about 10,000 sources in the model. Of these, 656 are individually-modeled large point sources,
most of which are electric generating units. For the remaining stationary point sources, AP2 attributed
emissions to the population-weighted county centroid of the county in which USEPA reports said source
exists. These county-point sources are subdivided according to the effective height of emissions because
this parameter has an important influence on the physical dispersion of emitted substances. Ground-level
emissions (from vehicles, trucks, households, and small commercial establishments without an individually-
monitored smokestack) are attributed to the county of origin (reported by USEPA), and are processed by
AP2 in a manner that reflects the low release point of such discharges.
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health effects due to O3 and PM2.5, but AP2 also considers crop and timber losses due to O3,

degradation of buildings and material due to SO2, and reduced visibility and recreation due

to PM2.5. For human health, ambient concentrations are mapped into increased mortality

risk and then increased mortality risks are mapped into monetary damages.70 AP2 uses the

value of a statistical life (or VSL) approach to monetize an increase in mortality risk (see

Viscusi and Aldy 2003). In this paper we use the USEPA’s value of approximately $600 per

0.0001 change in annual mortality risk.71 This value of an incremental change in mortality

risk yields a VSL of $6 x 106 = $600/0.0001.

AP2 is used to compute marginal ($/ton) damages over a large number of individual

sources (power plants in the present analysis) and source regions (counties within which

vehicles are driven). First, baseline emissions data that specifies reported values for all

emissions at all sources is used to compute baseline damages. (For this paper, we use

emissions data from USEPA (2014) that contains year 2011 emissions.) Next, one ton of

one pollutant, NOx perhaps, is added to baseline emissions at a particular source, perhaps

a power plant in Western Pennsylvania. Then AP2 is re-run to estimate concentrations,

exposures, physical effects, and monetary damage at each receptor conditional on the added

ton of NOx. The difference in damage (summed across all receptors) between the baseline

case and the add-one-ton case is the marginal damage of emitting NOx from the power

plant in Western Pennsylvania.72 This routine is repeated for all pollutants and all sources

in the model, first for full damages, and then second for native damages (which only looks

at receptors in the state or county of interest).

To assess the statistical uncertainty associated with the marginal damages produced by

AP2 for both gas and electric vehicles, we use results from Muller (2011) that executes

70Because baseline mortality rates vary considerably according to age, AP2 uses data from the U.S. Census
and the U.S. CDC to disaggregate county-level population estimates into 19 age groups and then calculates
baseline mortality rates by county and age group. The increase in mortality risk due to exposure of emissions
is determined by the standard concentration-response functions approach (USEPA 1999; 2010; Fann et al
2009). In terms of share of total damage, the most important concentration-response functions are those
governing adult mortality. In this paper, we use results from Pope et al (2002) to specify the effect of PM2.5

exposure on adult mortality rates and we use results from Bell et al (2004) to specify the effect of O3 exposure
on adult mortality rates.

71Of course not all lifetime vehicle miles are driven in the same year. But we assume that marginal
damages grow at the real interest rate so that there is no need to discount damages from miles over the life
of the vehicles.

72We can also analyze the marginal damages at each receptor.
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a Monte Carlo simulation for each marginal damage for the data year 2005 (by source and

pollutant). We use these simulation results in the following way. First, we compute the coeffi-

cient of variation for each pollutant-source marginal damage (standard deviation/arithmetic

mean). We then multiply these coefficients times the matching 2011 marginal damages.

This yields an estimate of the standard deviation for each source-pollutant marginal dam-

age. We then estimate confidence intervals in order to estimate the 5th and 95th percentiles

for the damages from gas and electric vehicles. These are used to calculate the environmental

benefits reported in Table 7.

Finally, we provide three pieces of evidence that AP2 gives similar marginal damage

estimates as other air pollution models. First, Weis et al (2015) test AP2 results (for 2005)

against the EASIUR model and find some variation in damages from electric vehicles. But

overall, they find that using different integrated assessment models does not fundamentally

overturn their results. Second, Barnett et al (2015) and Holland et al (2016) both analyzed

the damages and expected deaths from excess emissions from VW diesel engines. Holland

et al use AP2, Barnett et al use a different air pollution model. Nevertheless, the results

are essentially the same in the two papers. The third and final piece of evidence comes from

comparing the performance of AP2 relative to EPA emissions monitoring data. Jaramillo

and Muller (2016) perform a battery of tests and document that AP2 performs quite well

using standard performance metrics.

J State electric vehicle incentives

The Department of Energy maintains a database of alternative fuels policies by state.73 Using

this information, we determined four measures of state electric vehicle policy. (These data

reflect policies in place on July 28, 2014.) The first measure is the actual subsidies for the

purchase of an electric vehicle. The second measure is equal to the total number of electric

vehicle policies (including both incentives and regulations). The third measure is equal to

the number of policies that were classified by the Department of Energy as incentives. The

fourth measure is equal to the number of incentives that were deemed by us to be significant

73http://www.afdc.energy.gov/laws/matrix?sort by=tech
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(thus excluding, for example, an incentive that would only apply to the first 100 consumers

to install electric vehicle charging equipment).

The four measures are shown in Table F for each state along with the full damage subsidy

and the native damage subsidy. Each of the four measures is more highly correlated with

the native damage subsidy than with the full damage subsidy.

K Calibration and welfare sensitivity

To analyze welfare issues, we must calibrate a numerical version of the model. This requires

specifying functional forms for the utility of miles f(g) and h(e), determining “exogenous”

parameters that correspond directly to observed economic data, and determining the “en-

dogenous” parameters that are adjusted so that model outcomes correspond to observed or

assumed economic data.

We employ a functional form for the utility of consuming miles that yields a constant

elasticity demand function. For gasoline miles we have

f(g) = kg
g1−γ − 1

1 − γg

and for electric miles we have

h(e) = ke
e1−γ − 1

1 − γe
+H.

Using these equations, − 1
γ turns out to be the elasticity of demand for miles. We assume the

elasticity is the same for gas and electric miles. Because prices for miles are different, this

assumption would imply different number of lifetime miles for the two vehicles at business as

usual (no policy intervention). Because we want lifetime miles to be the same, we include the

endogenous parameters kg and ke. We also include the endogenous parameter H, which is

the intercept of h(e). This allows us to incorporate a non-stochastic taste for driving electric

vehicles. This is in contrast to the parameter µ which describes the standard deviation of

the random variables in the discrete choice model.

As in the main text, we compared the Ford Focus with the Ford Focus Electric. The
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Table F: State electric vehicle policies
State Full Native Actual Significant All incentives All incentives

Damage Damage Subsidy Incentives and regulations
Subsidy Subsidy

Alabama -1747 44 0 1 3 1
Arizona 889 276 0 5 14 6
Arkansas -1747 -37 0 0 2 0
California 2785 1547 2500 9 42 21
Colorado 902 312 6000 1 11 5
Connecticut -1933 -126 0 0 5 1
Delaware -2688 -27 0 0 3 1
District of Columbia -1017 441 0 2 4 3
Florida -1049 293 0 1 7 3
Georgia -1166 595 5000 4 7 7
Idaho 499 46 0 0 1 1
Illinois -2345 1000 4000 3 13 7
Indiana -3448 255 0 2 9 6
Iowa -4394 -109 0 0 4 2
Kansas -1133 118 0 0 1 0
Kentucky -1957 76 0 0 4 1
Louisiana -1735 -9 3000 1 4 3
Maine -2811 -393 0 0 4 1
Maryland -2199 439 3000 6 12 7
Massachusetts -1713 220 2500 1 5 2
Michigan -3720 279 0 3 5 5
Minnesota -4145 306 0 1 7 1
Mississippi -1992 -54 0 0 2 1
Missouri -2957 127 0 0 4 1
Montana -32 -41 0 0 1 1
Nebraska -3927 -14 0 0 2 1
Nevada 728 137 0 2 9 3
New Hampshire -2450 -324 0 0 3 0
New Jersey -1598 717 2461 2 4 2
New Mexico 521 74 0 0 6 3
New York -1371 616 0 1 6 4
North Carolina -1611 204 0 1 11 6
North Dakota -4964 -213 0 0 1 0
Ohio -2640 414 0 1 4 1
Oklahoma -1021 201 0 0 7 3
Oregon 648 149 0 1 12 5
Pennsylvania -2675 322 0 0 4 3
Rhode Island -1962 -132 0 0 5 1
South Carolina -1711 48 0 0 2 1
South Dakota -3992 -174 0 0 0 0
Tennessee -1729 55 0 1 3 1
Texas 505 380 2500 2 7 6
Utah 1089 544 605 2 8 4
Vermont -3034 -431 0 0 7 1
Virginia -1807 69 0 2 14 6
Washington 865 295 2321 1 19 5
West Virginia -3168 -91 0 0 4 0
Wisconsin -4180 76 0 0 6 2
Wyoming 205 -42 0 0 0 0

Correlation with full damage subsidy 0.30 0.40 0.50 0.49
Correlation with native damage subsidy 0.52 0.76 0.68 0.79

Notes: New Jersey and Washington give a sales tax exemption for electric vehicles. Sales tax rates are 6.5% in Washington
and 7% in New Jersey. The value for the subsidy in these states is calculated for the Ford Focus electric.
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exogenous parameters are shown in Table G.74 This leaves us with the task of specifying

the endogenous parameters kg, ke,H and µ. To pin down values of kg and ke, we follow

Michalek et al (2011) and assume that both gasoline vehicles and electric vehicles would be

driven 150,000 lifetime miles at business as usual. Using the functions f(g) and h(e) in the

consumer’s optimization problems, and then solving these problems at business as usual,

gives the demand for miles

g = (kg
pg

)
1
γ

and

e = (ke
pe

)
1
γ

.

Setting e = 150,000 and g = 150,000, substituting the values for γ, pg, and pe from Table G,

and solving for ke and kg gives kg = 2.58 × 109 and ke = 8.93 × 108.

The values for µ and H were determined such that model outcomes matched two pieces

of economic data. First, at business as usual, the consumer would select the gasoline vehicle

with some given probability π̂. Second, consistent Li et al (2015)’s observation, when the

federal subsidy is $7500, half of all electric vehicles sales are due to the subsidy. These

conditions give us two equations, from which the values for µ and H can be determined. For

example, suppose that, at business as usual, ninety nine percent of the vehicles sold would

be gasoline, so that π̂ = 0.99. Using Li et al (2015)’s observation, this implies that, when the

subsidy is $7500, ninety eight percent of vehicles sold would be gasoline. So we have two

equations

π∣s=0 = 0.99

and

π∣s=7500 = 0.98.

Because all of the other parameters have been specified, the two left-hand-sides of these equa-

tions are a function of H and µ only. Solving these equations numerically for H and µ gives

the values in the first row of Table H. The other rows correspond to different assumptions

about π̂.

74Values in the table are in 2013 dollars. We convert to 2014 dollars when making calculations.
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The expression for welfare W in the main text gives the welfare associated with the

purchase of a new vehicle. For the calculations in Tables 6a and 6b, we multiply the welfare

per new vehicle sale by 15 million (the approximate number of new vehicle sales per year in

the U.S.).

Table G: Exogenous Calibration Parameters : Ford Focus and Ford Focus Electric

Param. Value Economic Interpretation Source/Notes

I 430040 Income over 10 year vehicle lifetime US BLS : $827 week
pe 0.0389 Price of electric miles ($ per mile) EIA : 0.1212 $ per kWh * 0.321 kWh/mile
pg 0.1126 Price of gasoline miles ($ per mile) CNN : 3.49 $ per gallon / 31 miles/gallon
pΩ 35170 Price of electric vehicle ($) Ford Motors
pG 16810 Price of gasoline vehicle ($) Ford Motors
γ 2 Gives elasticity for miles of -0.5 Espey 1998, Davis and Kilian 2011

Notes: www.bls.gov/emp/ep chart 001.htm,

http://www.eia.gov/electricity/monthly/epm table grapher.cfm?t=epmt 5 3,

http://money.cnn.com/2013/12/31/news/economy/gas-prices/, www.Ford.com. All accessed May 20, 2014.

A sensitivity analysis of the exogenous calibration parameters is given in Table I. Baseline

corresponds to a BAU probability of 0.01 of selecting the electric vehicle (which corresponds

to the first columns in Table 6a and 6b). Changes in the price of the vehicles and income

have no effect on the results. Changes in the price of miles and the elasticity of demand for

miles have no effect on the benefits of differentiated subsidies, but do effect the benefits of

differentiated taxes. Changes in the lifetime miles driven and percentage of sales due to the

current federal subsidy effect the benefits of both differentiated subsides and differentiated

taxes.

Table H: Value of µ and H as a function of the probability, with no policy intervention, of
selecting the gasoline vehicle

π̂ H µ

0.99 1688947865 10664
0.98 1688955973 10508
0.95 1688967313 10037

We conducted a final sensitivity analysis with respect to the price of gasoline and electric

miles. Up to now, we have assumed (in both the theoretical model and the empirical calcu-

lations) that these prices are the same across locations. In this final sensitivity analysis, we
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Table I: Sensitivity of Exogenous Calibration Parameters

Parameter Welfare Loss Welfare Loss Gain from
Subsidy Tax Differentiation

Federal State Federal State Subsidy Tax

Baseline 1782.8 1758.5 162.1 89.1 24.3 72.9
Gas Miles Elasticity + 33% 1232.3 1208.0 120.9 62.5 24.3 58.5
Gas Miles Elasticity 33% 2322.2 2297.9 200.8 113.9 24.3 86.9
Electric Miles Elasticity + 33% 1760.9 1736.6 161.4 89.1 24.3 72.3
Electric Miles Elasticity 33% 1803.7 1779.4 162.6 89.1 24.3 73.4
Lifetime Miles Electric 16.6% 1795.5 1765.4 167.2 89.2 30.2 78.0
Lifetime Miles Electric - 16.6% 1769.1 1750.3 157.1 89.0 18.8 68.1
Lifetime Miles Gas +16.6% 2069.5 2042.9 187.6 104.7 26.6 82.9
Lifetime Miles Gas -16.6% 1496.5 1474.2 137.0 73.8 22.3 63.2
Purchases due to subsidy +10% 1787.8 1756.2 168.5 90.4 31.6 78.1
Purchases due to subsidy - 10% 1778.7 1760.6 156.8 88.1 18.1 68.7
Price of Electric Vehicle +16.6% 1782.8 1758.5 162.1 89.1 24.3 72.9
Price of Electric Vehicle -16.6% 1782.8 1758.5 162.1 89.1 24.3 72.9
Price of Gas Vehicle + 16.6% 1782.8 1758.5 162.1 89.1 24.3 72.9
Price of Gas Vehicle -16.6% 1782.8 1758.5 162.1 89.1 24.3 72.9
Price of Electric Miles +16.6% 1775.0 1750.7 162.0 89.1 24.3 72.9
Price of Electric Miles -16.6% 1792.9 1768.6 162.0 89.1 24.3 72.9
Price of Gas Miles + 16.6% 1558.7 1534.4 147.2 79.6 24.3 67.5
Price of Gas Miles 16.6% 2084.6 2060.3 181.0 101.2 24.3 79.9
Income + 16% 1782.8 1758.5 162.1 89.1 24.3 72.9
Income -16% 1782.8 1758.5 162.1 89.1 24.3 72.9

Note: $ Million/year
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drop this assumption and employ state-specific prices for electric miles and region-specific

prices for gasoline miles (using data from EIA.gov). In this analysis, the second best uniform

federal subsidy is no longer given by the expression in Proposition 2, and in fact does not

have a closed form expression. Likewise for the second best uniform federal taxes. So we

determine the these quantities numerically. The benefits of differentiated subsidies, state

vs. federal, is $24.3 million (compared to a baseline of $24.3 million) and the benefits of

differentiated taxes is $68.5 million (compared to a baseline of $72.9 million).

L Single tax policies

Suppose that local government i uses both a tax on gasoline miles and a tax on electric miles.

As is well known, the government can obtain the first-best outcome by utilizing the Pigovian

solution. Here taxes are equal to the marginal damages, so that tgi = δgi and tei = δei.
Now suppose for some reason the government can only tax gasoline miles. What is the

optimal gasoline tax, accounting for the externalities from both gasoline and electric vehicles?

The answer to this question is given in the next Proposition.

Proposition 5. The optimal tax on gasoline miles alone in location i is given by

t∗gi =
⎛
⎜
⎝
δgi + δei

⎛
⎜
⎝

ei

−gi ( pG
gi(pg+t∗g)

εg
εG
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
,

where εg is the own-price elasticity of gasoline and εG is the own-price elasticity of the

gasoline vehicle.

The optimal tax on gasoline miles alone is less than the Pigovian tax on gasoline miles.

This occurs because the consumers have the option to substitute into the electric vehicle and

thereby avoid taxation on the externalities they generate.

Proof of Proposition 5.

Throughout the proof we can drop the subscript i. The first-order condition for tg is the

same as (A-13):

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) + ∂R

∂tg
= 0.
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In this case there is only a single tax, so expected tax revenue is given by

R = tgπg,

and hence
∂R

∂tg
= G + tg

∂G

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.

Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
− (δe)

∂E

∂tg
= 0.

Solving for tg gives

tg =
⎛
⎝
δg + δe

∂E
∂tg

∂G
∂tg

⎞
⎠
.

Now from (A-2), (A-3), and (A-4), we have

∂π

∂tg
= −π(1 − π)

µ
g,

∂G

∂tg
= −π(1 − π)

µ
g2 + π ∂g

∂tg
.

and
∂E

∂tg
= π(1 − π)

µ
eg + (1 − π) ∂e

∂tg
.

Now because there are no income effects, tg does not effect the choice of e, so this latter

equation simplifies to
∂E

∂tg
= π(1 − π)

µ
eg.
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Substituting these into the first-order condition for tg and simplifying gives

tg =
⎛
⎜⎜
⎝
δg + δe

⎛
⎜⎜
⎝

e
∂g
∂tg

µ

(1−π)g − g

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
.

We can further express this equation in terms of elasticities. The own-price elasticity of

gasoline miles is

εg =
∂g

∂tg

pg + tg
g

.

For discrete choice goods, price elasticities are defined with respect to the choice probability.

The own-price elasticity of the gasoline vehicle, given a change in the price of the gasoline

vehicle, is

εΨ = ∂π

∂pΨ

pΨ

π
= π(1 − π)

µ
( ∂Vg
∂pΨ

− ∂Ve
∂pΨ

)pΨ

π
= π(1 − π)

µ
(−1 − 0)pΨ

π
= −(1 − π)pΨ/µ.

Substituting the elasticities into the first-order condition for tg gives

tg =
⎛
⎜
⎝
δg + δe

⎛
⎜
⎝

e

−g ( pΨ

g(pg+tg)
εg
εΨ
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
.

∎

M Large scale electric vehicle adoption

This paper measures the marginal emissions from an increase in electricity consumption.

In this supplementary appendix, we consider two questions about this procedure related to

the current electricity grid. First, is it reasonable to use marginal emissions for our policy

analyses (e.g. considering a 5 percent electric vehicle adoption rate)? Second, does the

relationship between load and marginal emissions vary between high and low load conditions?

A simple way of approaching the first question is to compare the load due to electric

vehicle adoption with the total electricity consumption in the country. The entire light duty

vehicle fleet is approximately 250 million vehicles. Suppose 5 percent of this fleet consisted of
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electric vehicles. This is the steady state version of the 5 percent adoption rate discussed in

the main paper. The charging need for these vehicles corresponds to 60 TWh per year, which

is approximately 1.6% of total U.S. electricity consumption per year.75 Another approach

is based on the hourly load from electric cars relative to the random component of hourly

electricity load (after controlling for fixed effects by hour-of-day times month-of-sample). If

the electric vehicles were charged uniformly across the day, the electricity demand would be

6.8 GW (GWh per hour). The standard deviation of the random component of electricity

load in the country is 30.8 GW. So electric cars, at 5 percent of the entire fleet, would add

a load shock equal to approximately 22 percent of the standard deviation of load variation.

For the second question, we broke our load sample into two sub-samples, corresponding

to high and low load conditions. Note that our main regression includes fixed effects by hour-

of-day times month-of-sample. For each of these groups, there are about 30 observations.

We split each group based on the median to define “low demand” and“high demand” hours.

Using the aggregated data (all emissions within an interconnection), we regressed emissions

on load and fixed effects for just the high demand hours and then for just the low demand

hours. We then took the coefficients from these regressions as data and pooled them to

include all NERC regions and all hours for high/low demand levels (9*24*2=432 obsevations).

We regressed them on an indicator of whether they came from the high demand sample.

Periods with high demands have greater marginal emissions than periods with low demands,

but the effect varies by pollutant. For SO2 the increase is 68 percent, for CO2 the increase

is 12 percent, for NOx the increase is 46 percent, and for generation (which we use for

PM2.5) it is 80 percent. Although some of these percentages are large, none of the effects are

statistically significant when clustering by NERC region.

Our final analysis considers the implications of a large scale adoption of electric vehicles

on the future of the electricity grid. A full model would need to account for entry and

exit of power plants and transmission capacity, which is beyond the scope of this paper.

However, we can discuss how our approach could be modified to examine discrete changes

in load levels. Suppose the investment in new power plants to build grid capacity mimics

the existing grid. Under this assumption, we can use the average emission rates as an

75We have 12.5 million electric vehicles driven 15,000 miles per year using 0.32 KWh per mile.
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approximation for emission rates that result under grid expansion to service electric vehicles.

On average, the average emission rates are comparable to the marginal emission rates we

used in the main paper. But there is variation across interconnections and pollutants. See

Table J. For example, in Texas (ERCOT), average SO2 emission rates are 187% larger than

marginal rates, but average NOx rates are only 5% larger than marginal rates. In the Eastern

interconnection (EAST), both average SO2 and NOx emissions rates about 18% smaller than

marginal rates.

Table J: Average emission rates relative to marginal

Interconnection SO2 CO2 NOx PM2.5

ERCOT 187% 19% 5% -10%
WECC 72% -4% 54% -28%
EAST -18% -10% -19% -22%

N CAFE standards

Consider an automobile manufacturer that produces three models a, b, and g with corre-

sponding fuel economies in miles per gallon fa < fb < fg. As the notation indicates, vehicle

g will play the role of the gasoline vehicle in the main text (and thereby be the substitute

for the electric car.) The sales are each model are na, nb and ng. The CAFE standard

requires that fleet fuel economy (defined as the sales-weighted harmonic mean of individual

fuel economies) exceeds a given value k. So we have

na + nb + ng
na
fa
+ nb
fb
+ ng
fg

≥ k.

Suppose initially that the cafe standard is binding, which implies that the market would

prefer to swap from a high MPG vehicle purchase to a low MPG vehicle purchase, but

cannot do so because of the standard. It is helpful to write the initial condition in terms of

gallons per mile rather than miles per gallon:

na
fa
+ nb
fb
+ ng
fg

na + nb + ng
= 1

k
.
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We want to analyze the impact of selling an electric vehicle on the composition of the

fleet, under the assumption that the total number of vehicles sold stays the same. For

CAFE purposes, an electric car is considered to be an alternative fuel vehicle, and as such

is assigned an equivalent MPG. Let this be denoted by fe where fe > fg. Since the total

number of vehicles sold stays the same, the sale of an electric vehicle leads to a reduction

in sales of another type of vehicle. This clearly raises the fleet fuel economy, the CAFE

standard is no longer binding, and so the previously restricted swap from high to low MPG

may now be allowed to take place. Assume that the electric vehicle sale replaces a sale of a

model g vehicle, and that the desired swap is from b to a. Also assume that the footprint of

g and e are the same, and the footprint of b and a are the same. (This keeps the value of k

constant.) The swap of a for b can be done if the resulting fleet fuel economy satisfies the

standard:
na+1
fa

+ nb−1
fb

+ ng−1
fg

+ 1
fe

na + nb + ng
≤ 1

k
. (A-24)

Using the initial condition this becomes

1

k
+

1
fa
+ −1

fb
+ −1
fg
+ 1
fe

na + nb + ng
≤ 1

k
,

and so the condition becomes
1

fa
− 1

fb
≤ 1

fg
− 1

fe
. (A-25)

The right-hand-side of (A-25) specifies the maximum feasible increase in gallons per mile

that may occur from the swap of a for b due to the sale of an electric vehicle. If the CAFE

constraint binds after this swap (which we would generally expect to be the case), then this

maximum will be obtained. And of course this increase in gallons per mile has an associated

cost to society due to damages from emissions.

We see that CAFE regulation induces an additional environmental cost from electric

vehicles due to the substitution of a low MPG vehicle for a high MPG vehicle . We can sketch

a back-of-the-envelope calculation for the magnitude of this CAFE induced environmental

cost and its effect on the second-best subsidy on electric vehicles as follows. Assume that

vehicle a and vehicle b are in the same Tier 2 “bin”. For vehicles in the same bin, the vast
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majority of environmental damages are due to emissions of CO2. In addition, without a

explicit model of the new vehicle market, we don’t know in which location the vehicle a

will be driven. So we calculate the CAFE induced environmental cost due to CO2 emissions

only. Let δa and δb be the damage (in $ per mile) due to CO2 emissions from vehicle a and

b, respectively.76 It follows that the additional environmental cost is given by (δa − δb)g.

Next we integrate CAFE standards with the model in the main part of the paper. We

do not try to model both supply and demand for the market for vehicles. Rather we sim-

ply assume that the consumer chooses between the electric vehicle and vehicle g, and this

choice induces a change in the composition of the rest of the fleet due to CAFE regulation

considerations. The basic single-location welfare equation becomes

W = µ (ln(exp(Ve/µ) + exp(Vg/µ))) +R − (π(δb + δg)g + (1 − π)(δee + δag)).

We see that if the consumer selects the gasoline vehicle, then the fleet consists of this gasoline

vehicle in conjunction with vehicle b. But if the consumer selects the electric vehicle, then

the fleet consists of the electric vehicle in conjunction with vehicle a. (We are ignoring the

utility benefit generated by the switch from b to a.) Following similar arguments as in the

proof of Proposition 1, the optimal subsidy is determined to be

s∗ = ((δg − (δa − δb))g − δee).

We see that the optimal subsidy is decreased by the amount equal to the CAFE induced

environmental cost (δa − δb)g. Using our Ford Focus baseline numbers, the CAFE induced

environmental cost turns out to be $1555.77

76We have δa =
$0.3644

fa
, where the numerator is the CO2 damages per gallon in our model. (There are

0.008887 metric tons of CO2 per gallon of gasoline and the social cost of carbon is $41 per metric ton in
2014 dollars. Multiplying these two numbers gives 0.3644)

77There are two complications in this calculation. First, for a given vehicle, the MPG for CAFE purposes
is not equal to the EPA posted MPG number. On average, the EPA number is eighty percent of the CAFE
number. Second, for electric cars, the CAFE MPG is calculated as 82049 watt hours per gallon divided by
the EPA determined electricity consumption in watt hours per mile. So the CAFE MPG for a electric Ford
Focus is 82049/321 = 255.6 MPG. The EPA MPG for a gasoline Ford Focus is 30, dividing by 0.8 gives a
CAFE MPG of 37.5. We want to use the EPA MPG in the equation for the additional environmental cost
because it more accurately reflects real world gasoline consumption, but we must use the CAFE MPG in the
constraint (A-25). Let the EPA MPG be denoted with the superscript E and the CAFE MPG be denoted
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In addition to CAFE regulations, vehicle manufacturers must also satisfy EPA CO2

regulations. In theory, these regulations have been harmonized, so that the CO2 constraint

is equivalent to the CAFE constraint. In practice, there may be differences between the two

constraints. See Jenn et al (2016) for details.

O Calculation of upstream externalities from data in

Michalek et al (2011).

Table K: Damages Due To Upstream Externalities (Source: Michalek et al 2011)

GHG Local Other Total

Gasoline Vehicle (CV)
Vehicle production 316 535 78 929
Battery production 12 17 2 31
Gasoline production 290 289 18 597
Total 1557
Electric Vehicle (BEV 240)
Vehicle production 291 566 69 926
Battery production 532 1272 103 1907
Upstream electricity production 63 47 2 111
Total 2944

Michalek et al (2011) present data on damages due to upstream externalities from both

gasoline vehicles and electric vehicles. These data (in 2010 dollars) are presented in Table K.

Local corresponds to the damages from the local pollutants analyzed in our study (SO2,

NOx, PM2.5, and VOCs). Other corresponds to CO and PM10. All data except the up-

stream electricity production row are taken directly from table S-25 in Michalek et al (2011).

Upstream electricity production is calculated from electricity production in table S-25 as-

suming 6.3% percent of emissions from electricity production occur upstream (a number

with the superscript C. We have

(δa − δb)g = 0.3644(
1

fEa
−

1

fEb
) g = 0.3644(

1

0.8fCa
−

1

0.8fCb
) g =

0.3644

0.8
(

1

fCa
−

1

fCb
) g =

0.3644

0.8
(

1

fCg
−

1

fCe
) g,

where the last equality follows from the assumption that (A-25) is binding. Substituting 37.5 for fCg , 255.6

for fCe , and 150,000 for g gives $1555.
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which is calculated from Table S-15).

The electric vehicle total upstream costs are $2944 and the gasoline vehicle total upstream

costs are $1557, for a difference of $1387 in 2010 dollars, which is approximately $1500 in

2014 dollars.

We can also compare our calculation of the average environmental benefits of an electric

vehicle over the lifetime of driving the vehicle with the corresponding value from Michalek et

al (2011). Recall we found the average environmental benefits are be equal to -$1095. The

corresponding value for Michalek et al is -$181.78

P Cap and Trade Programs

If electric power plants are subject to a binding cap on total emissions of some pollutants,

then this will have an effect on the calculation of the environmental benefits of electric cars.

A complete analysis of this issue would require a model of the cap and trade market, because

permit trade would shift the location of emissions, even though the total level is capped. In

this Appendix, we approximate the effect of a binding cap by zeroing out marginal damages

from power plants that are subject to cap and trade markets.

There are several cap and trade markets that are relevant for our analysis of 2010-

2012 (these are described in EPA’s eGRID, see http://www.epa.gov/energy/egrid). Markets

regulating SO2 emissions include the Acid Rain Program and the Clean Air Interstate Rule

(CAIR) annual SO2 market. Markets for NOx emissions include both the CAIR seasonal

NOx market and the CAIR annual NOx market. The Regional Greenhouse Gas Initiative

regulates CO2 in the Northeast. As noted in the main text, during the period of analysis,

permit prices were low and the stock of banked permits was increasing.79 We set a power

plant’s marginal emissions for a given pollutant to zero if it is regulated for even part of the

year by one of these programs.

78According to table S-25 in Michalek et al (2011), the environmental externality from driving an electric
vehicle is electricity production (1762) plus vehicle operation (75) less PM10 (22) which equals 1815. For
gasoline cars is it vehicle operation (3246) less military (120) less monopsony (829) less disruption (335) less
CO (292) less PM10 (22) which equals 1648. This gives a difference of -$167 in 2010 dollars, which is -$181
in 2014 dollars.

79See the EPAs progress reports on emission, compliance, and market analyses (e.g.,
https://www.epa.gov/sites/production/files/2015-08/documents/arpcair10 analyses.pdf).
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The results are given in Table L. First we consider caps on pollutants in isolation. The

effect is largest for caps on SO2 (the environmental benefits shift from -0.73 to 0.79 cents

per mile). We also consider simultaneous caps on NOx, SO2, and CO2 (the environmental

benefits become 0.92 cents per mile.)

Table L: Effects of binding caps on environmental benefits (cents/mile for 2014 electric and
gasoline Ford Focus)

Electric Vehicle Gasoline Vehicle Environmental Benefits
mean min max mean min max mean min max

Baseline 2.59 0.67 4.72 1.86 1.03 4.32 -0.73 -3.63 3.16
NOx only 2.54 0.67 4.60 1.86 1.03 4.32 -0.68 -3.51 3.16
SO2 only 1.07 0.70 1.54 1.86 1.03 4.32 0.79 -0.47 3.40
CO2 only 2.50 0.67 4.73 1.86 1.03 4.32 -0.65 -3.63 3.16

NOx, SO2, and CO2 0.94 0.29 1.42 1.86 1.03 4.32 0.92 -0.35 4.04

Q Full Size Color Figures

Here we reproduce the figures from the main paper in color and at full size.
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Figure 1a: Marginal Damages for Gas Vehicles by County
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Figure 1b: Marginal Damages for Electric Vehicles by County

A.53



Figure 2: Second-Best Electric Vehicle Subsidy by County
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Figure 3a: Second-Best Electric Vehicle Subsidy by State (Full Damages)
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Figure 3b: Second-Best Electric Vehicle Subsidy by State (Native Damages)
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Figure 4a: Change in PM2.5 from Gasoline Vehicle in Fulton County, Georgia
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Figure 4b: Change in PM2.5 from Electric Vehicle in Fulton County, Georgia
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